
Projection Methods for
Generalized Eigenvalue Problems

Revised Edition

Christoph Conrads https://christoph-conrads.name

July 2, 2016

This work is licensed under the Creative Commons Attribution-ShareAlike
4.0 International License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-sa/4.0/

https://christoph-conrads.name
http://creativecommons.org/licenses/by-sa/4.0/

This document is the revised edition of the Master’s thesis Projection Methods
for Generalized Eigenvalue Problems by Christoph Conrads; the cover page is
different, the layout was slightly modified, the abstract in German as well as
the declaration of originality were removed, and typos were fixed.

Abstract

This thesis treats the numerical solution of generalized eigenvalue problems (GEPs)Kx =
λMx, whereK,M are Hermitian positive semidefinite (HPSD). We discuss problem and so-
lution properties, accuracy assessment of solutions, aspect of computations in finite precision,
the connection to the finite element method (FEM), dense solvers, and projection methods for
these GEPs. All results are directly applicable to real-world problems.
We present properties and origins of GEPs with HPSD matrices and briefly mention the

FEM as a source of such problems.
With respect to accuracy assessment of solutions, we address quickly computable and

structure-preserving backward error bounds and their corresponding condition numbers for
GEPs with HPSD matrices. There is an abundance of literature on backward error measures
possessing one of these features; the backward error in this thesis provides both.

In Chapter 3, we elaborate on dense solvers for GEPs with HPSD matrices. The standard
solver reduces the GEP to a standard eigenvalue problem; it is fast but requires positive definite
mass matrices and is only conditionally backward stable. The QZ algorithm for general GEPs
is backward stable but it is also much slower and does not preserve any problem properties.
We present two new backward stable and structure preserving solvers, one using deflation
of infinite eigenvalues, the other one using the generalized singular value decomposition
(GSVD). We analyze backward stability and computational complexity. In comparison to the
QZ algorithm, both solvers are competitive with the standard solver in our tests. Finally, we
propose a new solver combining the speed of deflation with the ability of GSVD-based solvers
to handle singular matrix pencils.

Finally, we consider black-box solvers based onprojectionmethods to compute the eigenpairs
with the smallest eigenvalues of large, sparse GEPs with Hermitian positive definite matrices
(HPD). After reviewing common methods for spectral approximation, we briefly mention
ways to improve numerical stability. We discuss the automated multilevel substructuring
method (AMLS) before analyzing the impact of off-diagonal blocks in block matrices on
eigenvalues. We use the results of this thesis and insights in recent papers to propose a new
divide-and-conquer eigensolver and to suggest a change that makes AMLS more robust. We
test the divide-and-conquer eigensolver on sparse structural engineering matrices with 10,000
to 150,000 degrees of freedom.

2010Mathematics Subject Classification. 65F15, 65F50, 65Y04, 65Y20.

3

Contents

1 Introduction 6
1.1 Problem Statement . 6
1.2 Notation and Preliminaries . 6

2 Numerical Solution of Eigenvalue Problems 15
2.1 Assessing Solution Accuracy . 15
2.2 Algebraic Eigenvalue Problems and the Finite Element Method 22
2.3 LAPACK . 26

3 Generalized Eigenvalue Problem Solvers 27
3.1 The Computational Complexity of Iterative Solvers 27
3.2 Solving Generalized Eigenvalue Problems . 30

3.2.1 QZ Algorithm . 30
3.2.2 SEP Reduction . 30
3.2.3 SEP Reduction with Deflation . 31
3.2.4 GSVD Reduction . 34

3.3 Solving Standard Eigenvalue Problems . 36
3.4 Computing the Generalized Singular Value Decomposition 37

3.4.1 Direct Computation . 37
3.4.2 Computation via QR Factorizations and CSD 37
3.4.3 Computation via QR Factorizations and SVD 38

3.5 Numerical Experiments . 39
3.6 Conclusion . 43

4 Projection Methods for Large, Sparse Generalized Eigenvalue Problems 45
4.1 Spectral Approximation for Large, Sparse Matrices 45
4.2 Improving Numerical Stability . 50
4.3 Automated Multilevel Substructuring . 51

4.3.1 Nested Dissection . 51
4.3.2 Algorithm . 52
4.3.3 Remarks . 54
4.3.4 Exact Eigenpairs . 55

4.4 Eigenvalues and GEPs with Block Matrices . 56
4.4.1 Eigenvalue Perturbation Bounds without Eigenvectors 56
4.4.2 Eigenvalue Perturbation Bounds with Eigenvectors 57
4.4.3 Application to AMLS . 58
4.4.4 Minimizing Eigenvalue Perturbation . 59
4.4.5 Backward Error Bounds . 61

4.5 A Multilevel Eigensolver . 63
4.5.1 Developing AMLS Further . 63
4.5.2 Description . 64

4

Contents

4.5.3 More Robust AMLS with Intermediate GEP Solves 64
4.6 The Multilevel Eigensolver in Practice . 67

4.6.1 Adaptive Backward Error Control is Unnecessary 67
4.6.2 Bisection is Unnecessary . 67
4.6.3 Solving System of Linear Equations with the Schur Complement 69
4.6.4 Numerical Experiments . 70

5 Conclusion 73

Bibliography 74

5

1 Introduction

1.1 Problem Statement

This thesis treats the numerical solution of generalized eigenvalue problemsKx = λMx, where
K,M are real symmetric positive semidefinite.

Definition 1.1. LetK,M ∈ Cn,n. Finding x ∈ Cn \ {0} and λ ∈ C so that

Kx = λMx

is called a generalized eigenvalue problem (GEP). The pair (λ, x) is called eigenpair, λ is called
(generalized) eigenvalue, and x is called (right) eigenvector.

In Chapter 2, we will discuss the numerical solution of GEPs in the context of scientific
computing, we explain the connection to the Finite Element Method, and we will present
(easily computable) error measures for the solution of GEPs. In Chapter 3, we will present
numerically robust alternatives to the standard dense GEP solver and we will examine the
practical performance of these solvers on a single core of a current CPU. Afterwards, we discuss
the treatment of large, sparse GEPs.

1.2 Notation and Preliminaries

In this thesis, In denotes the n× n identity matrix and if the dimension is obvious, we omit the
index. The variables e1, e2, . . . , en denote the ith column of In and their dimension is always
apparent from the context. Let A ∈ Cm,n, then ranA denotes the range of A and kerA denotes
the kernel (null space) of A. We call anm× nmatrix A isometric if it has orthonormal columns.
Equivalently,m ≥ n and A∗A = In, where A∗ is the complex conjugate transpose of A. When
using the notation A = [a1, a2, . . . , an], the ai are the columns of A. When we wish to use the
value of the matrix A in row i and column j, then we can write Aij or A = [aij] so that aij is
the (i, j) entry in A. The notation ∆A signifies a perturbation of A and we denote the complex
conjugate transpose of ∆A by ∆A∗.

Let A ∈ Cn,n, let S ∈ Cn,s be isometric. Sometimes we wish to solve GEPs and SEPs restricted
to a given subspace. Let S ∈ Cn,s contain an orthonormal basis of this subspace (S is isometric),
let xS ∈ Cs be a solution in the subspace. Computing x = SxS ∈ Fn is called lifting xS .

Previously, we introduced the generalized eigenvalue problem and for completeness, we also
introduce the standard eigenvalue problem.

Definition 1.2. Standard Eigenvalue Problem [HJ12, §1.1] Let A ∈ Cn,n. Finding x ∈ Cn \ {0}
and λ ∈ C so that

Ax = λx

is called a (standard) eigenvalue problem (SEP). The pair (λ, x) is called eigenpair, λ is called
eigenvalue, and x is called (right) eigenvector.

6

1.2 Notation and Preliminaries

Not every n× nmatrix possesses n linearly independent eigenvectors.

Theorem 1.1 ([HJ12, Theorem 1.3.7]). Let A ∈ Cn,n have n linearly independent eigenvectors. Then
there exist an invertible matrix X ∈ Cn,n and a diagonal matrix Λ ∈ Cn,n such that

A = XΛX−1.

The columns x1, x2, . . . , xn of X are the eigenvectors of A and the diagonal entries λ1, λ2, . . . , λn of Λ
are the eigenvalues belonging to the eigenvectors.

Normal matrices are a well known subset of all diagonalizable matrices.

Definition 1.3 (Normal matrix [HJ12, Definition 2.5.1]). Let A ∈ Cn,n. If

A∗A = AA∗,

then A is called normal.

Theorem 1.2 ([HJ12, Theorem 2.5.3]). Let A ∈ Cn,n be normal. Then there exists a unitary matrix
X ∈ Cn,n and a diagonal matrix Λ ∈ Cn,n such that

A = XΛX∗.

In this thesis, we often deal with Hermitian matrices.

Theorem 1.3 ([HJ12, Theorem 4.1.5]). LetA ∈ Cn,n be Hermitian. Then there exists a unitary matrix
X ∈ Cn,n and a diagonal matrix Λ ∈ Rn,n such that

A = XΛX∗.

If A is real, then all matrices can be taken to be real.

Observe that every Hermitian matrix is normal. An Hermitian matrix with positive eigenval-
ues is called positive definite (HPD) and an Hermitian matrix with non-negative eigenvalues is
called positive semidefinite (HPSD). Accordingly, real symmetric matrices with these properties
are called symmetric positive definite (SPD) and symmetric positive semidefinite (SPSD), respectively.

Another useful matrix decomposition is the singular value decomposition. For HPSDmatrices,
the SVD and the eigendecomposition are identical if the eigenvalues are sorted in ascending
order.

Definition 1.4 (Singular Value Decomposition (SVD) [HJ12, §2.6]). Let A ∈ Cm,n. There are
unitary matrices U ∈ Cm,m, V ∈ Cn,n and a diagonal matrix Σ ∈ Rm,n such that

A = UΣV ∗.

This is called the singular value decomposition (SVD) of A. The columns u1, u2, . . . , um of U are
called left singular vectors, the columns v1, v2, . . . , vn of V are called right singular vectors, and the
diagonal entries σ1 ≥ σ2 ≥ · · · ≥ σp ≥ 0 of Σ are called singular values, where p = min(m,n). If
A is real, then all matrices can be taken to be real.

We can use the SVD to determine the rank of a matrix as well as bases for range and null
space.

Theorem 1.4 ([MC, Corollary 2.4.6]). Let A ∈ Cm,n have rank r. Then the following holds:

7

1 Introduction

• σi > 0, i = 1, 2, . . . , r,

• σi = 0, i = r + 1, . . . , p, where p = min(m,n),

• ranA = span{u1, u2, . . . , ur},

• kerA = span{vr+1, . . . , vn}.

Ifm ≥ n, then the first rankA columns of U form a basis for the range of A and we can use
this property to define the so-called thin SVD.

Definition 1.5 (Thin SVD). Let m ≥ n, let A ∈ Cm,n. Then there exists an isometric matrix
U ∈ Cm,n, a unitary matrix V ∈ Cn,n, and a diagonal matrix Σ ∈ Rn,n such that

A = UΣV ∗.

This is called the thin SVD of A. If A is real, then all matrices can be taken to be real.

We will denote vector and matrix norms with ‖·‖. In this thesis, we use induced matrix norms
and the Frobenius norm.

Definition 1.6 (Induced matrix norm [HJ12, Definition 5.6.1]). Let A ∈ Cm,n. Then we define
the matrix p-norm as

‖A‖p := max
‖v‖p=1

‖Av‖p.

Note that there are mainly three important norms in the definition above. Also, these matrix
norms are called subordinate matrix norms, cf. [ASNA, §6.2] [MC, §2.3]. Let A = [aij] ∈ Cm,n.
Similar to the vector p-norms, the most frequently used induced matrix norms are

• the column sum norm ‖A‖1 = maxj
∑m
i=1|aij |

• the spectral norm ‖·‖2, and

• the row sum norm ‖A‖∞ = maxi
∑n
j=1|aij |

The Frobenius norm is the Euclidean norm for vectors applied to a matrix:

‖A‖F :=

√∑

i,j

|aij |2.

The following theorem highlights a desirable property of the spectral and the Frobenius norm.

Theorem 1.5 ([MC, §2.3.5]). Let A ∈ Cm,n, let U ∈ Cm,m, V ∈ Cn,n be unitary matrices. Then it
holds that

‖U∗AV ‖p = ‖A‖p, p = 2, F,

i. e., the spectral and the Frobenius norm are unitarily invariant.

As a corollary, it holds that

‖A‖2 = σ1(A),

‖A‖F =
√

Σni=1σ
2
i .

We also need further decompositions.

8

1.2 Notation and Preliminaries

Definition 1.7 (Upper-trapezoidal matrix). A matrix = [aij] ∈ Cm,n is called upper-trapezoidal if
aij = 0 whenever i > j.

Definition 1.8 (QR factorization [HJ12, Theorem 2.1.14]). Let A ∈ Cm,n. Then there exists a
unitary matrix U ∈ Cm,m and an upper-trapezoidal matrix R ∈ Cm,n such that

A = QR.

This is called the QR factorization of A. If A is real, then all matrices can be taken to be real.

Definition 1.9 (Thin QR factorization). Letm ≥ n, let A ∈ Cm,n. Then there exists an isometric
matrix U ∈ Cm,n and an upper-triangular matrix R ∈ Cn,n such that

A = QR.

This is called the thin QR factorization of A. If A is real, all matrices can be taken to be real.

Similar to the QR factorization, we can define the QL, RQ, and LQ decompositions, where L is
a lower triangular matrix. Additionally, we need the QR factorization with full column pivoting.

Definition 1.10 (QR factorization with full column pivoting [MC, §5.4.2]). Let A ∈ Cm,n. Then
there exist a unitary matrix U ∈ Cm,m, an upper-trapezoidal matrix R = [r1, r2, . . . , rn] ∈ Cm,n,
and a permutation matrix Π ∈ Cn,n such that

AΠ = QR,

‖ri‖2 ≥ ‖rj‖2, i ≤ j, and Rii = 0 whenever i > rankA. This is called the QR factorization with
full column pivoting of A. If A is real, then all matrices can be taken to be real.

Finally, we introduce the Cholesky decomposition with and without pivoting.

Definition 1.11 (Cholesky decomposition [HJ12, Corollary 7.2.9]). Let A ∈ Cn,n be HPD. Then
there exists a unique lower triangular matrix L ∈ Cn,n such that

A = LL∗.

This is called the Cholesky decomposition of A. If A is real, then L can be taken to be real.

Definition 1.12 (Cholesky decomposition with complete pivoting [ASNA, §10.3]). Let A ∈ Cn,n
beHPSD. Then there exist a lower triangularmatrixL ∈ Cn,n and a permutationmatrixΠ ∈ Cn,n
such that

A = ΠLL∗Π∗.

Π is chosen so that the pivot element is the largest diagonal entry. This is called the Cholesky
decomposition with complete pivoting of A. If A is real, then all matrices can be taken to be real.

In this thesis, we deal with GEPs with Hermitian matrices or Hermitian GEPs for short.

Definition 1.13 (Hermitian GEP). A generalized eigenvalue problemK−λM is calledHermitian
ifK andM are Hermitian.

For generalized eigenvalue problems, hermiticity is not a property as powerful as for standard
eigenvalue problem hence we will highlight some of these problems with a few examples found
in [Par98, §15.2] and [Saa11, §9.2.1]. To that end, we need to introduce the concept of a GEP
eigenvalue as a pair.

9

1 Introduction

Definition 1.14. LetK,M ∈ Cn,n. A pair (α, β) 6= (0, 0) of complex numbers is an eigenvalue
ofK − λM if

det(βK − αM) = 0.

We will emphasize the usefulness of pairs as eigenvalues with the following example where
we cannot calculate λ = α/β for all eigenvalues.

Example 1.1. Let

K =

[
1 0
0 0

]
,M =

[
0 0
0 1

]
.

This matrix pair has the eigenvalues (1, 0) and (0, 1).

For GEPs, hermiticity does not guarantee real eigenvalues.

Example 1.2 (Hermitian GEPs can have complex eigenvalues). Let

K =

[
−1 0
0 1

]
,M =

[
0 1
1 0

]
.

Then the matrix pencilK − λM has only complex eigenvalues (α, β) with β = ±ıα, where ı is
the imaginary unit.

Furthermore, there are circumstances where eigenvalues may be chosen arbitrarily.

Example 1.3 (Hermitian GEP with arbitrary eigenvalues I). LetK = 0,M = 0. This Hermitian
GEP has the eigenvalue (α, β), (α, β) ∈ C× C \ {0, 0}.

Unfortunately, non-trivial intersections of the null spaces are not a necessary criterion for the
existence of GEPs with at least one arbitrary eigenvalue.

Example 1.4 (Hermitian GEP with arbitrary eigenvalues II). Let

K =




0 0 1
0 0 0
1 0 0


 ,M =




0 0 0
0 0 1
0 1 0


 .

The intersection of the null spaces kerM = span e1 and kerK = span e2 is trivial yet det(βK −
αM) ≡ 0 because the first row of K and second row of M are always linearly dependent.
Moreover, the eigenvector x0 corresponding to the arbitrary eigenvalue (α0, β0) is a function of
the eigenvalue. Assuming α0 and β0 are nonzero, we have

x0 = [α0/β0, 1, 0]T .

Evidently, the presence of arbitrary eigenvalues is a property of the matrix pencil and not
of the individual matrices which makes their presence hard to detect. In fact, calculating the
distance to singularity of a matrix pencil K − λM is an open research problem, cf. [MMW15]
(Example 1.4 was constructed with the aid of Theorem 17). Pairs without arbitrary eigenvalues
are called regular.

Definition 1.15 (Regular matrix pencil [Saa11, Definition 9.1]). Amatrix pencilK−λM is called
regular if

det(βK − αM) 6≡ 0,

otherwise it is called singular.

10

1.2 Notation and Preliminaries

For standard and regular generalized eigenvalue problems, eigenvalues are unique.

Definition 1.16 (Eigenvalue). Let r = maxα,β rank(βK − αM). If rank(βK − αM) < r, then
(α, β) 6= (0, 0) is called eigenvalue.

Definition 1.17 (Regular eigenvector). Let x be an eigenvector such that βKx = αMx. If (α, β)
is a unique eigenvalue, then x is called a regular eigenvector.

Now we introduce special cases of the cosine-sine decomposition (CSD) and the generalized
singular value decomposition (GSVD). We can use these to prove properties and solve GEPs
with HPSD matrices.

Definition 1.18 (2-by-1 CS Decomposition [MC, §2.5.4], [Bai92, §2]). Let n, r ∈ N, let n ≥ r, let
Q ∈ C2n,r be isometric and partition Q as

Q =

[r

n Q1

n Q2

]
.

Then there are unitary matrices U1, U2 ∈ Cn,n, V ∈ Cr,r and non-negative diagonal matrices
Σ1,Σ2 ∈ Rn,r such that

Q =

[
Q1

Q2

]
=

[
U1 0
0 U2

] [
Σ1

Σ2

]
V ∗,

where furthermore

Σ1 =

[r
r C
n− r 0

]
,Σ2 =

[r
r S
n− r 0

]
,

with C2 + S2 = Ir. If Q is real, then all matrices may be taken to be real.

Denote the diagonal entries ofC by ci and let si denote the diagonal entries of S, i = 1, 2, . . . , r.
Since it holds that c2i + s2

i = 1, we can regard both variables as the cosine and sine values of an
angle θi ∈ [0, π/2] so that ci = cos θi and si = sin θi.

Definition 1.19 (Generalized Singular Value Decomposition [MC, §6.1.6], [Bai92, §2]). Let
n, r ∈ N, n ≥ r, let A,B ∈ Cn,r. Then there are unitary matrices U1, U2 ∈ Cn,n, Q ∈ Cr,r,
non-negative diagonal matrices Σ1,Σ2 ∈ Rn,r, and an upper-triangular matrix R ∈ Cr,r such
that [

A
B

]
=

[
U1 0
0 U2

] [
Σ1

Σ2

] [
0 R

]
Q∗.

It holds that

Σ1 =

[r
r C
n− r 0

]
,Σ2 =

[r
r S
n− r 0

]
,

where C2 + S2 = Ir. If A and B are real, then all matrices may be taken to be real.

The pairs (ci, si) are called generalized singular value pairs and σi := ci/si are the generalized
singular values of the matrix pencil (A,B). We define σi :=∞whenever ci = 0, si = 1. Note that
since ci and si are trigonometric functions of the same angle θi, we can also define σi := cot θi.
Moreover, with

X := Q

[
In−r 0

0 R−1

]

11

1 Introduction

the columns of X are called the right generalized singular vectors of (A,B).
The GSVD reduces to the CSD if [AB] is isometric. Thus there are two ways in practice to

compute the GSVD of a pair of matrices: we can either compute it directly using the algorithms
in Lapack [BD92; BZ93] or we can reduce GSVD calculation to the problem of computing the
CSD by using orthogonal factorizations (see Section 3.4).

The GSVD provides a wealth of information about the matrices A and B and their properties,
among other things the null space of A, the null space of B, and their intersection. Most
importantly for this thesis, we can compute the GSVD in practice and there is a simple relation
between the GSVD and Hermitian definite GEPs that captures many interesting properties that
are specific to GEPs with HPSD matrices.

Theorem 1.6 ([Bai92, §4.2, §4.3]). Let A,B ∈ Cn,n, let
[
A
B

]
=

[
U1 0
0 U2

] [
Σ1

Σ2

] [
0 R

]
Q∗

be the GSVD of (A,B), let r = rank[A∗, B∗], and let X = [x1, x2, . . . , xn] ∈ Cn,n be the matrix of
right singular vectors. Then we solved implicitly the generalized eigenvalue problem A∗Ax = λB∗Bx,
where

• λi = σ2
i , i = 1, 2, . . . , r,

• the right singular vectors X of (A,B) are the eigenvectors of (A∗A,B∗B),

• [x1, x2, . . . , xn−r] is an orthonormal basis for kerA∗A ∩ kerB∗B.

• (λi, xn−r+i) are eigenpairs, i = 1, 2, . . . , r.

If A and B are real, then all matrices can be taken to be real.

Note that (∞, x) is an eigenpair of (A∗A,B∗B) iff (0, x) is an eigenpair of (B∗B,A∗A).

Proof. Partition Q as

Q =
[r n− r

n Q0 Qr
]
.

It holds that [
0 R

]
Q∗ =

[
0 R

] [Q∗0
Q∗r

]
= RQ∗r

as well as
Σ∗1Σ1 =

[
C 0

] [C
0

]
= C2, Σ∗2Σ2 = S2.

The rest of the proof is simple substitution. BecauseQ is unitary, for all q0 ∈ spanQ0,Q∗rq0 = 0 so
that A∗Aq0 = 0 and B∗Bq0 = 0 hence Q0 is indeed a basis for kerA∗A ∩ kerB∗B. Furthermore,
we have

A∗A = QrR
∗Σ∗1U

∗
1U1Σ1RQ

∗
r = QrR

∗C2RQ∗r

and similarly B∗B = QrR
∗S2RQ∗r . With RQ∗rX = Ir, it follows that X∗A∗AX = C2 and

X∗B∗BX = S2.

Earlier we stated that hermiticity is not a property as powerful for GEPs as for SEPs. However,
in this thesis the matrices are also positive semidefinite and this allows us to derive a number of
useful properties based on Theorem 1.6.

12

1.2 Notation and Preliminaries

Theorem 1.7. Let K,M ∈ Cn,n be HPSD. Then there exists an invertible matrix X ∈ Cn,n that
diagonalizesK andM simultaneously. IfK andM are real, then X is real as well.

Proof. Because K andM are HPSD, there exist matrices A,B ∈ Cn,n such that K = A∗A and
M = B∗B [HJ12, Theorem 7.2.7]. We can now apply Theorem 1.6. Let

[
A
B

]
=

[
U1 0
0 U2

] [
Σ1

Σ2

] [
0 R

]
Q∗

be the GSVD of (A,B), let X ∈ Cn,n be the matrix of right singular vectors of (A,B). By
definition, AX = U1Σ1 and BX = U2Σ2. Consequently,

X∗KX = X∗A∗AX = Σ∗1Σ1 = C2,

X∗MX = X∗B∗BX = Σ∗2Σ2 = S2,

where C and S are diagonal.
IfK andM are real, then A and B can be taken to be real [HJ12, Corollary 7.2.9]. ThenX will

be real as well.

Above we have shown that a Hermitian matrix pencil may be singular. If we are dealing with
pairs of HPSD matrices, this is true if and only if the intersection of the null spaces is non-trivial.

Theorem 1.8. LetK,M ∈ Cn,n be HPSD.K − λM is regular iff kerK ∩ kerM is trivial.

Proof. Let Z = K +M . FromWeyl’s Theorem [HJ12, Theorem 4.3.1] we deduce

λmin(Z) ≥ λmin(K) + λmin(M) ≥ 0.

The inequality on the right-hand side is strict iff kerK ∩ kerM is trivial, i. e., det(βK −αM) 6≡ 0
iff kerK ∩ kerM is trivial. Applying the definition of regularity completes the proof.

Theorem 1.8 has a useful implication: we can determine if a matrix pencil with HPSDmatrices
is regular by examining the matrix kernels; singular pencils like in Example 1.4 are not possible
with pairs of HPSD matrices. Furthermore, detecting the null space intersection allows us to
calculate the unique eigenvalues and this is exactly what the GSVD does.

Theorem 1.9. Let K,M ∈ Cn,n be HPSD. Then the subspace of non-regular eigenvectors is unique
and orthogonal to the subspace of regular eigenvectors.

Proof. Every Hermitian matrix is diagonalizable, i. e., there exists a basis of eigenvectors for Cn.
Moreover, eigenvectors corresponding to different eigenvalues are orthogonal. Consequently,
the kernel of a Hermitian matrix is orthogonal to its range.

LetN = kerK ∩ kerM , letR = ranK ∪ ranM . IfN is the set containing only the origin, then
the GEP is regular by Theorem 1.8 and there is nothing to prove. Otherwise let u ∈ N , u 6= 0,
and let v ∈ R, v 6= 0. If v ∈ ranK, then v is orthogonal to u because K is Hermitian and for
these matrices kerK ⊥ ranK. Similarly, if v ∈ ranM , then v must be orthogonal to u as well.
Consequently, N must be orthogonal toR.

NoteR and N are both invariant subspaces ofK andM . Therefore they are also eigenspaces
of (K,M). From Theorem 1.8, we know that the matrix pencil (K,M) projected ontoRmust
be regular. We also know (K,M) projected onto N is a pair of zero matrices. Thus, all regular
eigenvectors of (K,M) can be found inRwhich is orthogonal to N .

13

1 Introduction

In this thesis, we also need graph theory. Let G = (V,E) be an undirected graph with nodes
V = {1, 2, . . . , n}, edges E ⊆ {{i, j}|i, j ∈ V }, and edge weights (or costs) c : E → R. More
specifically, we are dealing with simple graphs in this thesis; these graphs have no loops {i, i}
and there is at most one edge between every pair of vertices. For certain problems in graph
theory, unweighted graphs are used and for these it holds that c ≡ 1. We can represent an
undirected simple graph with a real symmetric matrix and vice versa, a real symmetric matrix
induces an undirected simple graph.

Definition 1.20 (Adjacency matrix [Sed02, §17.3, §17.5]). Given an undirected simple graph
G = (V,E), let n = |V |. The adjacency matrix A of G is real symmetric n× nmatrix with entries

aij :=

{
c({i, j}) if {i, j} ∈ E,
0 otherwise.

Throughout this thesis, we ignore diagonal elements of Hermitian matrices when we discuss
their induced graphs. For complex Hermitian matrices, we will explicitly provide a rule to
compute the edge costs of the inducedweighted graph. In graph theory, there is also the adjacency
list representation of a graph [Sed02, §17.4]; from a numerical linear algebra perspective, this
can be any sparse matrix representation of the adjacency matrix.

Example 1.5. Let

A =




0 8 0 3
8 0 1 −2
0 1 0 0
3 −2 0 0


 .

This induces the following graph:

12

3 4

8

31 -2

Example 1.6. Let A be the n × n matrix of all ones except on the diagonal. Then the graph
induced by A is the unweighted complete graph with n vertices.

14

2 Numerical Solution of Eigenvalue Problems

In this chapter, we will discuss how we can assess the accuracy of an approximate solution of a
generalized eigenvalue problem with Hermitian positive semidefinite matrices (Section 2.1) and
we will elaborate on the finite element method as a source of generalized eigenvalue problems
in Section 2.2. We conclude the chapter with a brief remark on Lapack.

2.1 Assessing Solution Accuracy

Given an approximate eigenpair (λ̃, x̃) to a GEP, we want to assess its accuracy. Obviously, we
can examine the difference between λ̃ and the exact eigenvalue λ it is supposed to approximate.
Then |λ̃− λ| is called the forward error of λ̃. Alternatively, we can try to modify the GEP so that
(λ̃, x̃) is an exact eigenpair:

(K + ∆K)x̃ = λ̃(M + ∆M)x̃.

Given a norm for a pair of matrices, min∆K,∆M‖(∆M,∆K)‖ is the backward error [ASNA, §1.5].
For vector-valued quantities v, “measuring” a perturbation ∆v is an obvious matter, e. g., we
can take any vector p-norm. Selecting a suitable norm for matrix pairs is less obvious. In this
thesis, we use the set of matrix polynomial norms proposed in [AAK11, §2].
Definition 2.1. Let K,M ∈ Cn,n, let ω ∈ R2, ω > 0, let P (t) = K − tM . We define the matrix
polynomial norm ‖P‖ω,p,q as follows:

‖P‖ω,p,q := ‖[1/ω1‖K‖p, 1/ω2‖M‖p]‖q.
Definition 2.2. Let ∆K,∆M ∈ Cn,n be perturbations of square matricesK andM , respectively.
Then we define the corresponding polynomial ∆P as

∆P (t) := ∆K − t∆M.

With the aid of these norms, we can define the backward error.
Definition 2.3 (Backward error of an eigenpair). Let (λ̃, x̃) be an approximate eigenpair of the
matrix pencil (K,M). Then the backward error of (λ̃, x̃) is defined as

ηω,p,q(λ̃, x̃) := min{‖∆P‖ω,p,q : P (λ̃)x̃+ ∆P (λ̃)x̃ = 0}.

Example 2.1. Consider the backward error for an approximate eigenpair (λ̃, x̃) of the matrix
pencil (K,M) defined in [HH98, §2.1]:

min{ε ≥ 0 : (K + ∆K)x̃ = λ̃(M + ∆M)x̃, ‖∆K‖p ≤ ε‖K‖p, ‖∆M‖p ≤ ε‖M‖p}.
We can find an equivalent definition utilizing the matrix polynomial norms with ω(p) :=
[‖K‖p, ‖M‖p] and q =∞ so that

‖∆P‖ω(p),p,∞ = min

[
‖∆K‖p
‖K‖p

,
‖∆M‖p
‖M‖p

]
.

15

2 Numerical Solution of Eigenvalue Problems

Let λ be a root of P (t) = K− tM and consider the perturbed polynomial P + ∆P . If ‖∆P (λ)‖
is small, then P + ∆P will have a root λ̃ near λ. Now given h > 0, let f(h) be a function
maximizing |λ̃− λ| subject to ‖∆P (t)‖ ≤ h. Vice versa, if (λ̃, x̃) is an eigenpair approximation,
then we can bound the forward error |λ̃− λ| by calculating f(ηω,p,q(λ̃, x̃)).

Definition 2.4 (Condition number of a simple eigenvalue [HH98, §2.2]). Let (λ, x) be an eigenpair
of the matrix pencil (K,M), where λ is a simple, nonzero, finite eigenvalue. Given ∆λ, ∆x, let
λ̃ = λ+ ∆λ, x̃ = x+ ∆x. Then the condition number of the eigenvalue λ is defined as

κω,p,q(λ, x) := lim
ε→0

sup

{
1

ε

|∆λ|
|λ| : P (λ̃)(x̃) + ∆P (λ̃)(x̃) = 0

}
,

subject to ε ≥ 0, limε→0‖∆x‖ = 0, and ‖∆P‖ω,p,q ≤ ε‖P‖ω,p,q.

Note that one must use the same norm for forward error, backward error, and condition
number in order to get meaningful results. Also, the condition number is a property of the
problem and independent of the method employed to calculate a solution. In practice, the first-
order term of the Taylor expansion of f is used as condition number (we assume f is continuously
differentiable) and consequently, the relationship between the forward and backward error is
often expressed as

forward error ≤ condition number × backward error.

As a consequence, we can assess the accuracy of a an approximate solution without knowing
exact solutions. If the condition number is small, then we call a problem well conditioned; if the
condition number is large, then we call a problem ill conditioned. [ASNA, §1.6].
From a numerical linear algebra point of view, the best approach to assess the quality of a

solution is the calculation of the backward error and to bound the forward error by computing
the condition number for the following reasons:

• If we want to calculate the forward error, we need an exact solution which we may not
have or which we cannot represent on a computer.

• There may be multiple solutions to the same problem (eigenvalue problems come to mind)
forcing us to select one of them for the calculation of the forward error.

• After we calculated a value for the forward error, all we know about the backward error is
that it is no larger than the forward error as if the problem was perfectly conditioned.

• Due to problem conditioning, there is no fool-proof criterion identifying accurate solutions
using the forward error.

Furthermore, the following theorem allows us to derive an unambiguous criterion for an accurate
solution that employs the backward error.

Theorem 2.1 ([ASNA, Theorem 2.2]). Let α ∈ R lie in the range of a finite precision arithmetic, let α̃
be the number closest to α in this finite precision arithmetic. Then

|α̃− α| ≤ (1 + δ)|α|, δ < u,

where u is the unit round-off.

16

2.1 Assessing Solution Accuracy

We conclude, if the relative backward error ηHp,q(λ̃, x̃) is at the level of the unit round-off and
if the problem is well conditioned, that we can consider a solution to be accurate. Note the
backward error here is based on norms and there may be circumstances where a componentwise
error measure is more appropriate [ASNA, p. 4]. Next, we consider the preservation of problem
structure when assessing accuracy.

Example 2.2. Let

A =

[
0 1
1 0

]
,

let λ̃ = ı be an approximate eigenvalue, where ı is the imaginary unit. Hermitian matrices have
only real eigenvalues. Hence there is no Hermitian perturbation ∆A so that ı is an eigenvalue of
A+ ∆A.

Perturbations that preserve (some of) the properties of a problem are called structure preserving.
In this thesis, we will consider a perturbation structure preserving if it preserves hermiticity
and we will indicate the corresponding backward error and its condition number with the
superscript H , e. g., ηHω,p,q(λ̃, x̃) and κHω,p,q(λ̃, x̃). If ∆K and ∆M preserve hermiticity, then it
holds that ∆P (t) = ∆P ∗(t), t ∈ C and for convenience, we will abbreviate this equality with
∆P = ∆P ∗.

Definition 2.5 (Structured backward error of an eigenpair). Let (λ̃, x̃) be an approximate eigen-
pair of the Hermitian matrix pencil (K,M). Then the structured backward error of (λ̃, x̃) is
defined as

ηHω,p,q(λ̃, x̃) := min{‖∆P‖ω,p,q : P (λ̃)x̃+ ∆P (λ̃)x̃ = 0, ∆P = ∆P ∗}.

Definition 2.6 (Structured condition number of a simple eigenvalue [HH98, §2.2]). Let (λ, x) be
an eigenpair of the Hermitian matrix pencil (K,M), where λ is a simple, finite eigenvalue. Then
the structured condition number of the eigenvalue λ is defined as

κHω,p,q(λ, x) := lim
ε→0

sup

{
1

ε
|∆λ| : P (λ+ ∆λ)(x+ ∆x) + ∆P (λ+ ∆λ)(x+ ∆x) = 0

}
,

subject to ε ≥ 0, limε→0‖∆x‖ = 0, ‖∆P‖ω,p,q ≤ ε‖P‖ω,p,q and ∆P = ∆P ∗.

Given a quantity s and its approximation s̃, the term |s̃− s| is the absolute error while |s̃− s|/|s|,
s 6= 0, is the relative error [ASNA, §1.2]. The relative error is scale invariant (and dimensionless if
s is a physical quantity) so throughout this thesis, we will use the relative backward error by
using an appropriate weight vector ω:

ωrel(p) := [‖K‖p, ‖M‖p]. (2.1)

For convenience, we introduce the following short hand:

ηp,q(λ̃, x̃) := ηωrel(p),p,q(λ̃, x̃), κp,q(λ̃, x̃) := κωrel(p),p,q(λ̃),

ηHp,q(λ̃, x̃) := ηHωrel(p),p,q
(λ̃, x̃), κHp,q(λ̃, x̃) := κHωrel(p),p,q

(λ̃).

In this thesis, we will use the structured backward error ηHF,2(λ̃, x̃) [AA11, §3] and its corre-
sponding condition number because we can compute these quantities in a numerically stable
way in time linear in the number of matrix entries (in time linear in n and the number of matrix

17

2 Numerical Solution of Eigenvalue Problems

entries if the matrices are sparse). Given the structure preserving perturbations ∆K and ∆M

minimizing ηHF,2(λ̃, x̃), we are effectively calculating

ηHF,2(λ̃, x̃) =

∥∥∥∥
[‖∆K‖F
‖K‖F

,
‖∆M‖F
‖M‖F

]∥∥∥∥
2

.

The following theorem describes how we can compute ηHF,2(λ̃, x̃).

Theorem 2.2. Let (λ̃, x̃) be an approximate eigenpair of the Hermitian matrix pencil (K,M), where λ̃
is real finite and ‖x̃‖2 = 1. Let r = Kx̃− λ̃Mx̃. Then

ηHF,2(λ̃, x̃) =

√√√√ 2‖r‖22 − |r∗x̃|
2

‖K‖2F + |λ̃|2‖M‖2F
.

Proof. The theorem follows from [AA11, Theorem 3.10], where

Λm = [‖K‖F , |λ̃|‖M‖F]

due to our use of the weight vector ωrel(F).

If (λ, x) is an eigenpair of the matrix pair (K,M), then (1/λ, x) is an eigenpair of (M,K). We
can exploit this fact to compute the backward error for eigenpairs with infinite eigenvalues.

Corollary 2.1. Let (λ̃, x̃) be an approximate eigenpair of the Hermitian matrix pencil (K,M), where λ̃
is real infinite and ‖x̃‖2 = 1. Then

ηHF,2(λ̃, x̃) =
1

‖M‖F

√
2‖Mx̃‖22 − |x̃∗Mx̃|2.

Note that we can explicitly compute the unique perturbations corresponding to the backward
error ηHF,2(λ̃, x̃).

Example 2.3. Let c ≥ 1, letK := cIn, letM := In. The eigenpairs of the matrix pencil are (c, ei),
i = 1, 2, . . . , n. Consider the approximate eigenpair (c̃, e1), c̃ ≥ 1, c̃ 6= c, let τ := c̃/c, and let
r = Ke1 − c̃Me1 = (c̃− c)e1 denote its residual. Then for the backward error ηH2,2(c̃, e1) we have
[AA11, Theorem 3.10]:

ηH2,2(c̃, e1) =
‖r‖2√

‖K‖22 + |c̃|2‖M‖22
=
|τ − 1|√
τ2 + 1

.

If c̃ is very different from c, then τ is either very large or close to zero. In both cases, the backward
error will be close to one, i. e., the matrix pencil (K,M) was perturbed strongly. Now consider
the backward error ηHF,2(c̃, e1):

ηHF,2(c̃, e1) =

√
2‖r‖22 − |e∗1r|

2

‖K‖2F + |c̃|2‖M‖2F
=

1√
n

|τ − 1|√
τ2 + 1

=
1√
n
ηH2,2(c̃, e1).

In comparison to the backward error ηH2,2(c̃, e1), there is an additional factor 1/
√
n. Thus, the

larger the dimension of the matricesK andM , the smaller ηHF,2(c̃, e1). This dependency of the
backward error ηHF,2(c̃, e1) on the matrix dimension is an undesirable property of the Frobenius
norm.

18

2.1 Assessing Solution Accuracy

Note we can explicitly compute the unique perturbations corresponding to the backward error
ηHF,2. For condition numbers of eigenvalues of Hermitian GEPs, it holds that structured condition
numbers are not greater than the corresponding unstructured condition number. Hence we
can use both condition numbers to find an upper bound for the forward error. Moreover, we
deduce from the following theorem that both condition numbers are similar in our case (p = F
and q = 2).

Theorem 2.3 ([AAK11, Lemma 2.12]). For a simple, finite, nonzero eigenvalue λ of an Hermitian
matrix pencil (K,M), it holds that

1/
√

2κp,2(λ, x) ≤ κHp,2(λ, x) ≤ κp,2(λ, x), p = 2, F.

Proof. The proof can be found in [AAK11]. For the spectral case (p = 2), keep in mind that for
Hermitian GEPs left and right eigenvectors are identical. Also, the authors assume normalized
eigenvectors [AAK11, Eq. (2)].

There is no simple explicit expression for κHF,2(λ, x) [AAK11, §2.4]1 and in view of the bounds
in Theorem 2.3, we chose to compute the unstructured condition number κ(F, 2)λ, x instead
knowing that it is a reasonable approximation to κHF,2(λ, x).

Theorem 2.4. Let (λ, x) be an eigenpair of the Hermitian matrix pencil (K,M), where λ is simple and
finite. Then we can compute the condition number κF,2(λ, x) with

κF,2(λ, x) =
‖x‖22
|x∗Mx|

√
‖K‖2F + |λ|2‖M‖2F .

Proof. Insert ωrel(F) into [AAK11, Equation (10)].

In order to compute condition numbers of infinite eigenvalues, recall that if (λ, x) is an
eigenpair of the matrix pair (K,M), then (1/λ, x) is an eigenpair of (M,K).
We can now approximate the forward error.

Theorem 2.5. Let (λ̃, x̃) be an approximate eigenpair of an Hermitian matrix pencil (K,M), where λ̃ is
a simple, real finite eigenvalue and ‖x̃‖2 = 1. Let r = Kx̃− λ̃Mx̃. Then there exists an exact eigenvalue
λ of (K,M) such that

|λ̃− λ| ≤ 1

|x̃∗Mx̃|

√
2‖r‖22 − |r∗x̃|

2
.

Proof. The error bound is the product of the backward error ηHF,2(λ̃, x̃) and the corresponding
condition number κF,2(λ̃, x̃).

Numerical linear algebra problems are only one of a kind of the subproblems arising in
scientific computing. Consider the work flow depicted in Figure 2.1. By the time we acquire
an algebraic problem, the problem data may be polluted with multiple kinds of errors (see
also [Bat96, Table 4.4]). Moreover, different users of scientific computing have varying accuracy
requirements for their results. Therefore, in practice the most informative error measure of the
quality of a solution may not be the backward error. We must also keep in mind that the solution
quality is not the only relevant property in scientific computing, e. g., ease of implementation or
wall-clock time of a solver may be important, too.
1See pp. 2218f instead of Section 5 for the explanation.

19

2 Numerical Solution of Eigenvalue Problems

Physical problem
of interest

Mathematical
model

Computational
model

Model
parameters

Algebraic problem

Algebraic solution

Modeling error
M
ea
su

re
m
en

te
rr
or

Tr
un

ca
tio

n
er
ro
r

Round-off error

Iterative error

Figure 2.1: Sources of errors in scientific computing

20

2.1 Assessing Solution Accuracy

The following expression is as common error measure for solutions of GEPs arising from
structural mechanics problems [Bat96, 884f]:

‖Kx̃− λ̃Mx̃‖2
‖Kx̃‖2

. (2.2)

This error measure is an upper bound for the structured backward error ηH2,p(λ̃, x̃), p = 2,∞,
and we need following theorem to prove this.

Theorem 2.6. Let (λ̃, x̃) be an approximate eigenpair of the Hermitian matrix pencil (K,M), where λ̃
is real finite. Then

ηH2,q(λ̃, x̃) = η2,q(λ̃, x̃), q = 2,∞.
Proof. The proof for the case q =∞ can be found in [HH98, Theorem 2.3], the proof for q = 2 is
in [AA11, Theorem 3.10].

Theorem 2.7. Let (λ̃, x̃) be an approximate eigenpair of the Hermitian matrix pencil (K,M), where λ̃ is
real finite. Then the error measure in equation (2.2) is an upper bound for the backward error ηH2,q(λ̃, x̃),
q = 2,∞:

‖Kx̃− λ̃Mx̃‖2
‖Kx̃‖2

≥ ηH2,q(λ̃, x̃), q = 2,∞.

Proof. Let r = Kx̃− λ̃Mx̃. It holds that ηH2,q(λ̃, x̃) = η2,q(λ̃, x̃), q = 2,∞. A closed expression for
η2,2 can be found in [AA11, Equation 1], where Λm = [‖K‖2, |λ̃|‖M‖2]:

η2,2(λ̃, x̃) =
‖r‖2
‖x̃‖2

√
‖K‖22 + |λ̃|2‖M‖22

−1

.

The formula for η2,∞ is [HH98, Theorem 2.1]

η2,∞(λ̃, x̃) =
‖r‖2
‖x̃‖2

(‖K‖2 + |x̃|‖M‖2)−1.

Substituting r into Equation (2.2) gives

‖Kx̃− λ̃Mx̃‖2
‖Kx̃‖2

=
‖r‖2
‖Kx̃‖2

≥ ‖r‖2
‖K‖2‖x̃‖2

.

The inequalities

‖K‖2 ≤ ‖K‖2 + |λ̃|‖M‖2,

‖K‖2 ≤
√
‖K‖22 + |λ̃|2‖M‖22

complete the proof.

Corollary 2.2. Let (λ̃, x̃) be an approximate eigenpair of the Hermitian matrix pencil (K,M), where λ̃
is real finite. Then the error measure in equation (2.2) is almost an upper bound for the backward error
ηHF,2(λ̃, x̃):

√
2
‖Kx̃− λ̃Mx̃‖2
‖Kx̃‖2

≥ ηF,2(λ̃, x̃).

21

2 Numerical Solution of Eigenvalue Problems

Proof. Apply Theorem 2.7 and use ηHF,2(λ̃, x̃) ≤
√

2η2,2(λ̃, x̃) [AA11, Theorem 3.10].

So reducing the error measure (2.2) is directly related to a reduction of the backward error
which is a nice property reconciling this errormeasurewith the desire in numerical linear algebra
to minimize the backward error. At the same time, one needs to be cautious with Equation (2.2)
if the stiffness matrix is badly conditioned because then ‖Kx‖2 � ‖K‖2‖x‖2 so that

‖Kx̃− λ̃Mx̃‖2
‖Kx̃‖2

� η2,q(λ̃, x̃), q = 2,∞.

In this case, the backward error may be at the round-off level while the error measure (2.2) is a
large overestimate.

For structure preserving (hermiticity, definiteness) condition numbers of an eigenvalue with
multiplicity larger than one, see [Nak12, §3]. Note that GEP solvers based on GSVD reduction
(see Section 3.2.4) preserve semidefiniteness, too. The structured backward error ηHp,q(λ̃, x̃)
preserves hermiticity and it also preserves semidefiniteness if it is infinite for every negative or
complex eigenvalue.

2.2 Algebraic Eigenvalue Problems and the Finite Element Method

In this section, we focus on the origins of matrices arising from finite element discretizations in
structural mechanics. This section has its own notation and all integrals are Lebesgue integrals,
all derivatives are weak derivatives (see below).

Let Ω be a simply connected open set in d-dimensional space with a piecewise smooth bound-
ary ∂Ω, let u : Ω→ R, let

div u =

d∑

i=1

∂u

∂xi

denote the divergence, let ∇u denote the gradient of u, let · denote the scalar product. Let

Lu(x) = −div(A(x)∇u) + b(x) · ∇u+ c(x)u (2.3)

be a second-order linear differential operator with coefficient functionsA : Ω→ Rd,d, b : Ω→ Rd,
and c : Ω→ R. A, b, c ∈ L∞(Ω), whereLp(Ω) is a Lebesgue space of integrable functions [GRS07,
§3.2]

Lp(Ω) :=

{
v : Ω→ R

∣∣∣
∫

Ω

|v|p dx <∞
}
, p = 1, 2, . . . ,

L∞(Ω) := {v : Ω→ R | ess supΩ|v| <∞}

with norms

‖v‖Lp(Ω) :=

(∫

Ω

|v|p dx

)1/p

, p = 1, 2, . . . ,

‖v‖L∞(Ω) := ess supΩ|v|.

Moreover, we can introduce a scalar product on L2(Ω):

(u, v) :=

∫

Ω

uv dx.

22

2.2 Algebraic Eigenvalue Problems and the Finite Element Method

We want to find eigenvalues λ and eigenfunctions u of L subject to u|Γ = g. Without loss of
generality, we may assume g ≡ 0 [SF73, p. 70].

Definition 2.7 (Continuous eigenvalue problem [SF73, §6.1]). LetL be a second-order differential
operator. We are looking for functions u : Ω→ R and values λ ∈ C such that

Lu = λu in Ω,
u = 0 on ∂Ω .

The pair (λ, u) is called eigenpair, λ is called eigenvalue, and u is called eigenfunction.

Solving the continuous eigenvalue problem using Equation 2.3 requires every solution u to be
differentiable twice and we can ease this requirement. Let v : Ω→ R and consider the integral

−
∫

Ω

v div(A(x)∇u) dx+

∫

Ω

vb(x) · ∇udx+

∫

Ω

vc(x)udx = λ

∫

Ω

vudx.

We can apply Green’s formula [NSV09, Equation (9)]
∫

Ω

v divw dx = −
∫

Ω

∇v · w dx+

∫

∂Ω

vw · ndx,

where w : Ω→ Rd and n is the unit normal vector on ∂Ω. With the added requirement v|∂Ω = 0,
the integral transforms to

∫

Ω

∇v ·A(x)∇udx+

∫

Ω

vb(x) · ∇udx+

∫

Ω

vc(x)udx = λ

∫

Ω

vudx. (2.4)

Here, it suffices if u and v are differentiable once. We will now specify the function spaces
to which u and v must belong to in order to solve the continuous eigenvalue problem and
Equation (2.4). This will also permit us to clarify existence and uniqueness of solutions. First,
we have to introduce multi-indices α := (α1, α2, . . . , αn), α ≥ 0 [SF73, p. 137]. Let

|α| :=
n∑

i=1

αi,

let

Dαu :=
∂|α|u

∂xα1
1 ∂xα2

2 . . . ∂xαn
n
.

Cp(Ω) will denote the space of p-times continuously differentiable functions, p = 1, 2, . . . ,∞,
and Cp0 (Ω) is the subset of functions in Cp(Ω) with compact support [GRS07, p. XII].

Definition 2.8 (Weak derivative [GRS07, p. 131]). Let u,w ∈ L1(Ω). If
∫

Ω

uDαv dx = (−1)|α|
∫

Ω

vw dx

holds for all v ∈ C∞0 (Ω), then Dαu := w is called the weak derivative of uwith respect to α.

By applying the definition of weak derivatives to all first-order derivatives, we can similarly
define the weak gradient and the weak divergence of a function [GRS07, p. 132].

23

2 Numerical Solution of Eigenvalue Problems

Definition 2.9 (Sobolev space Hk(Ω)[SF73, p. 298] [NSV09, §2.1]). Let k ∈ N. Then we define
the Sobolev space Hk(Ω) as

Hk(Ω) := {v : Ω→ R | Dαv ∈ L2(Ω), |α| ≤ k}.

Hk(Ω) is an inner product space with the scalar product

(u, v)k :=
∑

|α|≤k
(Dαu,Dαv).

The scalar product induces the norm ‖·‖k:

‖v‖k :=

√∑

|α|≤k
‖Dαv‖2L2(Ω).

We will look for the solutions of Equation (2.4) in H1
0 (Ω).

Definition 2.10 ([SF73, pp. 11ff.] [GRS07, §3.2]). H1
0 (Ω) is the completion of C∞0 ∩H1(Ω) with

respect to ‖·‖H1(Ω), i. e., for every Cauchy sequence (uk), uk ∈ C∞0 , there exists a u ∈ H1
0 (Ω)

such that
lim
n→∞

‖uk − u‖H1(Ω) = 0.

Defining the bilinear form a : H1
0 (Ω)×H1

0 (Ω)→ R by

a(u, v) :=

∫

Ω

∇v ·A(x)∇udx+

∫

Ω

vb(x) · ∇udx+

∫

Ω

vc(x)udx

allows us to write the eigenvalue problem succinctly: find u ∈ H1
0 (Ω) and λ ∈ R such that

a(u, v) = λ(u, v)

for all v ∈ H1
0 (Ω).

If the eigenvalue problem arises from a structural mechanics problem [Bat96, §4] [Coo+01,
§2.6], then u is the displacement, c(x) ≡ 0, andA(x) is Hermitian as well as positive semidefinite.
Moreover, if there are no rigid-body modes or mechanisms in the model underlying the PDE,
then A(x) is positive definite. For the problems in this thesis, we will ignore damping, hence
b(x) ≡ 0. The resulting eigenvalue problems are used for analysis of system stability [Bat96,
§3.2.3], modal analysis (mode superposition, [Bat96, §9.3]), or analysis of free vibrations. For
the remainder of this section, we assume A(x) is HPD. It follows, in structural mechanics L is a
linear, self-adjoint, elliptic operator and a(·, ·) simplifies to

a(u, v) =

∫

Ω

∇v ·A(x)∇udx.

Now we discretize the problem. Let Vh ⊂ H1
0 (Ω) have dimension n, let the ansatz functions

φh1 , φ
h
2 , . . . , φ

h
n ∈ Vh be a basis of Vh, let h be a parameter describing the discretization. Then an

eigenpair (λh, uh) of the discretized problem must fulfill a(uh, vh) = λ(uh, vh) for all vh ∈ Vh.
Let uh =

∑n
i=1 x

h
i φ

h
i , xhi ∈ R. Using linearity of a(·, ·) and (·, ·), the equality

n∑

i=1

a(φhi , φ
h
j)xhi = λh

n∑

i=1

(φhi , φ
h
j)xhi

24

2.2 Algebraic Eigenvalue Problems and the Finite Element Method

must hold for all φhj ∈ Vh. This an algebraic eigenproblem. LetK = [a(φhi , φ
h
j)]ni,j=1 ∈ Rn,n, let

M = [(φhi , φ
h
j)]ni,j=1 ∈ Rn,n. In order to find approximate eigenpairs (λh, uh), we have to solve

the algebraic GEP
Kxh = λhMxh.

So far we have described the Ritz-Galerkin method [GRS07, pp. 151f]. Let us partition Ω into
smaller, geometrically simple subdomains and let each ansatz function be a low-degree polyno-
mial that is nonzero only on a few subdomains while enforcing compatibility requirements on
the subdomain boundaries. Then we acquire a finite element method (FEM, [SF73, §1.5] [GRS07,
§4]).
K is called stiffness matrix andM is calledmassmatrix. Bothmatrices are sparse, real symmetric

positive definite Gram matrices. We can make statements about the condition numbers of the
matrices although these are influenced by the properties of A(x) and by the choice of the ansatz
space Vh.

Theorem 2.8 ([SF73, Theorem 5.1]). For each variational problem and each choice of finite element
there exists a constant c > 0 such that

κ(K) ≤ ch−2
min.

The constant depends inversely on the smallest eigenvalue of the given continuous problem, and it in-
creases if the geometry of the elements becomes degenerate.

The finer the mesh, the worse the conditioning of the stiffness matrix. This problem can only
be solved by a change in the discretization, e. g., by using polynomial elements with higher
degree or by improving the mesh. Nevertheless, the condition number of the stiffness matrix
will always reflect bad conditioning of the differential operator L (physical ill-conditioning).
The condition number of consistent mass matrices is always bounded by a constant independent
of h but this constant may be large for certain choices of Vh [SF73, §5]. For a GEP with HPD
matrices, the condition number of each eigenvalue is bounded by ‖M−1‖2 = ‖M‖−1

2 κ2(M)
[Nak12, §3] and for this reason, a GEP arising from a FE discretization in structural mechanics
is well-conditioned.

The theory in this section is based on consistent and conforming finite element formulations.
In practice, modelling errors may cause the stiffnessmatrix to be singular if rigid-bodymodes are
present orK may be conditioned considerably worse than predicted by Theorem 2.8 [Kan+14,
§1, §3]. The mass matrix can be diagonal, singular, or even indefinite [Bat96, §4.2.4] [Coo+01,
§11.3].
For the remainder of this section assume λ1 ≤ λ2 ≤ . . . and λh1 ≤ λh2 ≤ · · · ≤ λhn.

Theorem 2.9 ([SF73, Theorem 6.1]). Let Vh ⊂ H1
0 (Ω) with dimension n. Then there exists a constant

c > 0 such that for small h by

λi ≤ λhi ≤ λi + 2cλ2
ih

2, i = 1, 2, . . . , n.

The smaller the eigenvalue, the better its approximation and this is a vital insight for the
sparse eigensolvers. Note λi ≤ λhi holds only if consistent and conforming FE formulations are
used. The inequality does also not hold when a discrete mechanics model with point masses is
used (mass lumping).

Definition 2.11 (Energy norm). Let u ∈ H1
0 (Ω). Then the energy norm is defined as

‖u‖A :=
√
a(u, u).

25

2 Numerical Solution of Eigenvalue Problems

Here, a(u, u) is a norm because A(x) is HPD and H1
0 (Ω) cannot contain non-zero constant

functions (their derivatives are zero but they do not have compact support). a(u, u) being a
norm can be proved formally with the aid of the Poincaré-Friedrichs inequality [NSV09, §2.5.1].

Theorem 2.10 ([SF73, Theorem 6.2]). Let Vh ⊂ H1
0 (Ω) with dimension n. Let c1, c2 > 0. If all

eigenfunctions ui are pairwise orthogonal with respect to the scalar product (·, ·), then for i = 1, 2, . . . , n

‖ui − uhi ‖0 ≤ c1λih2,

‖ui − uhi ‖A ≤ c2λih.

The estimates are the best possible.

Wewant to emphasize that a successful finite element analysis [Bat96, §1.2] requires an holistic
view of all the steps involved. If a FE solution is deemed too inaccurate, a numerical analyst may,
e. g., decide to increase the degree of the polynomial ansatz functions, use a finer mesh, or both.
This results in denser, larger matrices and hampers the solution of the algebraic problem. Vice
versa, mindlessly computing all algebraic eigensolutions with a small backward error is a waste
of resources because the larger algebraic eigenvalues λh are increasingly worse approximations
to their continuous counterparts (Theorem 2.9). What is more, a small backward error does not
rectify a large a priori error in the discretization step.

2.3 LAPACK

Throughout this thesis, we utilize the matrix operations presented in Section 1.2. Most of these
are implemented in Lapack using state-of-the-art algorithms, including the correct computation
of rank-revealing QR factorizations, cf. [DB08].

26

3 Generalized Eigenvalue Problem Solvers

In this chapter we discuss solvers for dense generalized eigenvalue problems (GEPs) with
Hermitian positive semidefinite (HPSD) matrices. For general GEPs, the QZ algorithm is
available [MC, §7.7] and unfortunately it seems to be much harder to exploit symmetry than in
the standard case. It is only when the matrices are also semidefinite that alternative approaches
to the QZ algorithm appear, the most popular being the reduction to a standard eigenvalue
problem (SEP) by means of a Cholesky decomposition of the mass matrix. Unfortunately, this
method is only conditionally backward stable so we will explore alternative solvers for GEPs
with HPSD matrices in this chapter. We will compare computational complexity (with respect
to the flop count) of the solvers, present pseudocode, and perform numerical experiments. u
signifies the unit roundoff [ASNA, §2.1] [MC, §2.7.3].

3.1 The Computational Complexity of Iterative Solvers

In this chapter, we want to calculate the computational complexity of each solver. We can do
this by summing the flop count of every operation but in order to acquire meaningful numbers,
we feel compelled to show flop counts for iterative processes separately. Therefore, for all non-
iterative operations we list the complexity given in the literature; for all iterative operations we
signify the complexity with functions f whose parameters are the dimensions of the problem.
Note that many solvers preprocess the matrix at hand, so even if the matrix is not square, there
may be only a single parameter for the dimension of the problem.

Example 3.1. We want to calculate the full singular value decomposition (SVD) of an m × n
matrix A,m ≥ n. The standard approach for this problem is to bidiagonalize A so that

U1BV
∗
1 := A

and iteratively compute the SVD of the bidiagonal matrix B:

U2ΣV ∗2 := B.

Assuming U := U1U2 and V := V1V2 are computed directly from U1 and V1, we require 4m2n+
4mn2 flops for the bidiagonalization ofA [MC, §5.4.8] and fU,Σ,V (n) flops for computing the SVD
of B so overall the procedures uses 4m2n+ 4mn2 + fU,Σ,V (n) flops. Note the single parameter
given to the function fU,Σ,V ; for matrices with more rows than columns, the preprocessing step
reduces A to an upper bidiagonal matrix with n entries on the diagonal and n− 1 entries on the
superdiagonal.

Denoting the computational complexity of iterative processes with opaque functions allows
us to sidestep the problem that we were unable to find flop counts for the Lapack GSVD and the
Lapack CSD solver in the literature.

In Table 3.1, we list the flop counts for common linear algebra operations onm× nmatrices.
For unitary transformations, we assume the elementary reflectors are stored and we omit terms
of order one or lower. Table 3.2 contains flop counts for common matrix decompositions. The

27

3 Generalized Eigenvalue Problem Solvers

Operation Flops Source

Dot product 2n [MC, §1.1.5]
Forward/backward substitution n2 [MC, §3.1.1, §3.1.2]
Cholesky factorization 1⁄3 n3 [MC, §4.2.5]
Cholesky factorization with pivoting 1⁄3 n3 + 4nr − 2r2 [HHL07, §1.1]
Accumulating anm× n isometric matrix
from k elementary reflectors

4mnk − 2(m+ n)k2+ 4⁄3 k3 [MC, §5.1.6]

Householder QR factorization 2mn2− 2⁄3 n3 [MC, §5.2.2]
Householder QR factorization with full
column pivoting

4mnr − 2(m+ n)r2+ 4⁄3 r3 [MC, §5.4.2]

Householder bidiagonalization 4mn2− 4⁄3 n3 [MC, §5.4.8]
Householder tridiagonalization 4⁄3 n3 [MC, §8.3.1]

Table 3.1: Flop counts for common linear algebra operations ofm×nmatrices withm ≥ n ≥ r, k,
where r is the rank of the matrix.

workspace size is depending on the exact solvers used for a given factorization and in this thesis,
the author used the Lapack Divide-and-Conquer solver for Hermitian SEPs (xSYEVD) which
has the highest minimal workspace demand of all Hermitian eigensolvers in Lapack. In practice,
the workspace demand may be even higher if blocking is used.

28

3.1
TheCom

putationalCom
plexity

ofIterativeSolvers

Decomposition Preprocessing Computed Values Flop Count Iterative function

Singular value decomposition (SVD) Bidiagonalization

Σ 4mn2 − 4/3n3 fΣ(n)
Σ, V 4mn2 fΣ,V (n)
U , Σ 4m2n + 4/3n3 fU,Σ(n)
U , Σ, V 4m2n + 8/3n3 fU,Σ,V (n)

Eigendecomposition (Hermitian SEP) Tridiagonalization Λ 4⁄3 n3 fΛ(n)
X , Λ 8⁄3 n3 fX,Λ(n)

2-by-1 CS decomposition (CSD) Bidiagonalization C, S 8mn2 − 8/3n3 fC,S(n)
C, S, V 8mn2 − 4/3n3 fC,S,V (n)

Table 3.2: Flop counts for common decompositions ofm× nmatrices,m ≥ n

29

3 Generalized Eigenvalue Problem Solvers

3.2 Solving Generalized Eigenvalue Problems

In this section, we present three approaches to solving generalized eigenvalue problems with
HPD and HPSD matrices.

3.2.1 QZ Algorithm

The QZ algorithm computes the generalized Schur decomposition of a GEP [MC, §7.7]. The QZ
algorithm is backward stable but we will not consider it further for the following reasons:

• The QZ algorithm computes flags of invariant subspaces instead of eigenvectors.

• The algorithm may calculate complex eigenvalues; exact eigenvalues are always real.

• When computing only eigenvalues, the flop count is on the order of 30n3; 46n3 if at least one
of the unitary matrices is accumulated. For comparison, SEP reduction (see Section 3.2.2)
requires 14n3 flops when computing eigenvalues and eigenvectors.

3.2.2 SEP Reduction

The standard approach for solving GEPs with HPDmatrices reduces the problem to a Hermitian
standard eigenvalue problem by computing the Cholesky decomposition LL∗ := M of the mass
matrix and solving the SEP L−1KL−∗xL = λxL. SEP reduction can be used whenever the
mass matrixM is HPD and the stiffness matrix K is Hermitian and with such matrices, the
GEP is always regular. The flop count (cf. Table 3.3) is ca. 5n3 + fX,Λ(n). The workspace size
2n2 + 6n+ 1 reflects the demands of the Lapack Divide-and-Conquer Hermitian eigensolver
xSYEVD.

For the computed eigenvalues λ̃i, it holds that [MC, p. 464, §8.7.2]

|λ̃i − λi| ≈ u‖L−1KL−∗‖2, i = 1, 2, . . . , n.

Due to the congruence transformation, we have

‖L−1KL−∗‖2 ≤ ‖K‖2‖M−1‖2 = ‖K‖2/‖M‖2 κ2(M).

Note ‖K‖2‖M−1‖2 is an upper bound for the largest eigenvalue and so we can read off the error
bounds in two ways:

• Similar to a standard eigenvalue problem, there is an absolute error depending on the
machine epsilon and the largest possible eigenvalue.

• With unit norm mass matrices, the absolute error u‖K‖2 is magnified by the mass matrix
condition number.

It follows that if M is ill conditioned, then there is a large absolute error in the eigenvalues.
Hence SEP reduction is simple, exploits hermiticity, allows the computation of subsets of the
eigenpairs, and benefits from the vast improvements of Hermitian eigensolvers. However it is
only conditionally backward stable.

30

3.2 Solving Generalized Eigenvalue Problems

Operation Function Flops

Factorize LL∗ := M xPOTRF 1⁄3 n3

Compute L−1KL−∗ xSYGST 4⁄3 n3

Solve SEP xSYEVD 8/3n3 + fX,Λ(n)

Revert basis change xTRSM n3

Solve GEP xSYGVD 5n3 + fX,Λ(n)

Table 3.3: Flop count for a GEP solver using SEP reduction (workspace size: 2n2 + 6n+ 1 units)

3.2.3 SEP Reduction with Deflation

If the mass matrix is singular, then plain SEP reduction cannot be used. In this case one has to
deflate the infinite eigenvalues from the matrix pencil and Algorithm 1 is an implementation of
the deflation procedure described in [MX15, Algorithm 2]. In finite precision arithmetic, the
deflation step may ensure completion of the Cholesky decomposition and it it improves the
conditioning of the deflated GEP (if the full rank part of the mass matrix is well-conditioned).
If the mass matrix is singular, then the GEP may be singular as well and while Algorithm 1
cannot deal with non-regular matrix pencils, it can recognize them with the aid of the following
theorem.

Theorem 3.1. Let A,B ∈ Cn,n Hermitian, where B is singular and partitioned as

B =

[
B11 0
0 0

]
,

B11 ∈ Cp,p, p < n. Partition A conformally to B so that

A =

[
A11 A12

A∗12 A22

]
.

Let x = [0, x2] ∈ Cn, x2 ∈ Cn−p, i. e., x is partitioned conformally to A and B and x ∈ kerB. Then
[
A12

A22

]
x2 = 0

if and only if
x ∈ kerA ∩ kerB.

Proof. Consider the multiplication Ax. This gives

Ax =

[
A11 A12

A∗12 A22

] [
0
x2

]
=

[
A12x2

A22x2

]
.

This expression is zero iff x ∈ kerA. Since we have by definition x ∈ kerB, it follows thatAx = 0
iff x ∈ kerA ∩ kerB.

Using this theorem, we can detect non-regular matrix pencils by checking for singular values
of [K

(M)
21 ,K

(M)
22] with value zero.

31

3 Generalized Eigenvalue Problem Solvers

Input: K,M ∈ Cn,n HPSD
Output: A matrix pencil (A,B) without infinite eigenvalues, orthonormal bases for the sub-
spaces corresponding to the finite and infinite eigenvalues
function deflate(K,M)

ifM = 0 then
return [], [], [], In

end if

Compute eigendecomposition: XMΛMX
∗
M ←M

Sort eigenvalues in ascending order (permute columns of XM accordingly)
rM ← rankM
p← n− rM

if rM = n then
returnK,M

end if

K(M) ← X∗MKXM

Compute SVD: UΣW ∗ ← K(M)(:, 1 : p)
if σp = 0 then

Error: (K,M) is not regular
end if

U12 ← U(1 : p, p+ 1 : n)
U22 ← U(p+ 1 : n, p+ 1 : n)

A← U∗22(K
(M)
22 U22 +K

(M)
21 U12)

B ← U∗22ΛM (p+ 1 : n, p+ 1 : n)U22

return A,B,XMU(:, p+ 1 : n), XM (:, 1 : p)
end function

Algorithm 1: Pseudocode for the deflation of infinite eigenvalues of a Hermitian matrix pencil

32

3.2 Solving Generalized Eigenvalue Problems

Let κM denote the spectral condition number of the full-rank part ofM . Thus it holds that for
the backward error of the deflation procedure that [MX15, p. 15]

‖∆M‖2 ∈ O([κ2
Mu + 1]κ2(U22)2‖M‖2u),

‖∆K‖2 ∈ O([κM‖U−1
22 ‖2‖K‖2 + ‖K̂‖2‖U−1

22 ‖2 + ρ‖K(M)
22 ‖2κ2(U22)2]u),

where

U∗
[
K

(M)
11

K
(M)
21

]
=

[
K̂
0

]

and
ρ := ‖K(M)

12 (K
(M)
22)−1‖2.

Observe that the backward error can be arbitrarily large if the full-rank part ofM is ill condi-
tioned. The backward error can also be large if the smallest angle θmin between the subspaces
corresponding to finite and infinite eigenvalues, respectively, is close to zero. It holds that [MX15,
§3] ρ = cot θmin and σmin(U22) = sin θmin so the smaller θmin, the larger ρ and ‖Q−1

22 ‖2. We can
fix the former problem by perturbing the mass matrix and setting all eigenvalues below a given
cut-off to zero but then we will have eigenvalues with infinite forward error (eigenvalues that
used to be finite and were infinite after the perturbation) and we may accidentally run into the
second problem.

Example 3.2. LetM = diag(0,u, 1), let

K =




1 0 0
0 1 c
0 c 2c2


 ,

where c ≥ 1 (noteK is always positive definite). It holds that

κM = 1/u, U22 = [e2, e3], ‖U−1
22 ‖2 = 1, θmin = π/2,

so ‖∆M‖2 = ‖M‖2 and ‖∆K‖2 ≈ ‖K‖2 because of the ill conditioning of the full-rank mass
matrix part (the subspaces corresponding to the finite and infinite eigenvalues, respectively, are
orthogonal). Consider the modified mass matrixM ′ = diag(0, 0, 1). Here, the full-rank matrix
part is perfectly conditioned for the negligible cost of a perturbation with norm u but now the
smallest angle between the subspaces is almost zero whenever c� 1. With c� 1, it holds that

‖U21‖2 =
c√

1 + c2
≈ 1

thus θmin = arccos ‖U21‖2 ≈ 0 and again, we cannot bound the backward error in a useful way.

We can detect the cases where the backward error bound is large. The case κM � 1 can
be recognized immediately after the eigenvalue decomposition of the mass matrix and small
angles between subspaces corresponding to finite and infinite eigenvalues, respectively, can be
detected by computing the spectral norms of the off-diagonal block of the matrix U from the
SVD because cos θmin = ‖U21‖2 = ‖U12‖2.
We can use the deflation procedure to acquire a GEP solver for singular and ill-conditioned

mass matrices by first deflating the infinite eiegenvalues of the matrix pencil, solving the deflated
GEP, and lifting the computed eigenvectors afterwards. The flop count can be found in Table 3.4.
It sums up to

20/3n3 + 6n2r + 4nr2 + 11r3 + fX,Λ(n) + fX,Λ(r) + fU,Σ(n− r).

33

3 Generalized Eigenvalue Problem Solvers

Operation Function Flops

CopyM xLACPY n2

Eigendecomposition XΛX∗ = M xSYEVD 8⁄3 n3 + fX,Λ(n)
ComputeK(M) := X∗KX – 4n3

CopyK(M) xLACPY n2

SVDK(M)(:, 1 : p) xGESVD 4n2r + 8/3r3 + fU,Σ(n− r)
Compute A := U∗22(K22U22 +K21U21) – 2nr2 + r3 + r2

Compute B := U∗22ΛM (p+ 1 : n, p+ 1 : n)U22 – 2r3 + r2

Solve deflated GEP A− λB xSYGVD 16⁄3 r3 + 1⁄2 r2 + fX,Λ(r)
Revert basis changes: X := XMU(:, p+ 1 : n)XAB – 2n2r + 2nr2

Copy XM (:, 1 : p) xLACPY n2 − nr

Table 3.4: Flop count for a GEP solver using SEP reduction with deflation (workspace size:
4n2 + 6n+ 1 units)

Bounding the run time is difficult. Consider the case r = 1, then the flop count is on the order of

7n3 + fX,Λ(n) + fX,Λ(1) + fU,Σ(n− 1)

whereas for r = n
28n3 + fX,Λ(n) + fX,Λ(n− 1) + fU,Σ(1).

Unfortunately, these bounds are not informative becausewith r = 1 the GEPwill have dimension
1 and in the second case (r = n− 1) we have to compute the SVD for a n× 1 matrix. That is, we
compute the Euclidean norm of a vector. The minimum workspace size is 4n2 + 6n+ 1 units.

3.2.4 GSVD Reduction

Given a GSVD solver for matrix pairs (A,B), we showed in Theorem 1.6 that we are implic-
itly computing the eigendecomposition of the matrix pencil (A∗A,B∗B) so given a suitable
decomposition A∗A := K and B∗B := M , we can employ the GSVD to solve a GEP. The GSVD
reduction is able to detect non-trivial intersections of the null spaces of a matrix pair and return
an orthonormal basis for it. Moreover, the GSVD reduction preserves hermiticity as well as
semidefiniteness of the matrices.

To employ the GSVDwe need suitable matrix decompositions such as eigendecompositions or
Cholesky factorizations with pivoting. For example for the eigendecomposition of the stiffness
matrix, we have XKΛKX

∗
K := K. In this case, A := Λ

1/2X∗K . In this thesis, we will use the
Cholesky factorization with pivoting because it is cheaper to compute and because non-positive
elements on the diagonal are an unambiguous indicator for matrices that are not positive definite
(rank determination by means of singular or eigenvalues is less tangible). Given the Cholesky
decomposition with pivoting of mass and stiffness matrix, i. e.,

R∗KRK = ΠKKΠ∗K , R
∗
MRM = ΠMMΠ∗M ,

where ΠK , ΠM are permutation matrices, we have to compute the GSVD of (RKΠK , RMΠM).
The GSVD solvers in Section 3.4 are all backward stable but this is not sufficient to guarantee

numerically stable computation of the eigenvectors because the upper-triangular matrix Rmay
be ill-conditioned.

34

3.2 Solving Generalized Eigenvalue Problems

Theorem 3.2. Let A,B ∈ Cn,n such thatK = A∗A,M = B∗B. Let
[
A
B

]
=

[
U1 0
0 U2

] [
Σ1

Σ2

] [
0 R

]
Q∗

be the GSVD of (A,B). Let r = rank[A∗, B∗] and partition Q as

Q =
[r n− r

n Q0 Qr
]
.

Then it holds that
R∗R = Q∗r(A

∗A+B∗B)Qr.

Proof. Because U1 and U2 are unitary,

Q∗r
[
A∗ B∗

] [U1 0
0 U2

] [
U1 0
0 U2

]∗ [
A
B

]
Qr = Q∗r(A

∗A+B∗B)Qr.

Moreover, by construction [
U1 0
0 U2

]∗ [
A
B

]
Qr =

[
Σ1

Σ2

]
R.

Hence
Q∗r
[
A∗ B∗

] [A
B

]
Qr = R∗

[
Σ∗1 Σ∗2

] [Σ1

Σ2

]
R = R∗

[
C2 + S2

]
R = R∗R.

Theorem 3.3 (cf. [Tas15, §3]). Let A,B ∈ Cn,n such that K = A∗A, M = B∗B, let R be the
upper-triangular matrix from the GSVD of (A,B), and let v ∈ ranK ∪ ranM . Then

√
max(‖A‖22, ‖B‖

2
2)

min‖v‖2=1‖[Av,Bv]‖2
≤ κ2(R) ≤

√
‖A‖22 + ‖B‖22

min‖v‖2=1‖[Av,Bv]‖2
.

Proof. It holds that σ2
j (R) = σj(R

∗R), where σj(R) denotes the jth singular value of R and
σj(R

∗R) is the jth singular value of R∗R. In conjunction with the previous theorem and
σ1 = ‖·‖2 this gives ‖R‖22 = ‖R∗R‖2 = ‖A∗A+B∗B‖2 which we can bound with

max(‖A‖2, ‖B‖2) ≤ ‖R‖2 ≤
√
‖A‖22 + ‖B‖22.

For the smallest singular value it holds that

σr(R)2 = σr(R
∗R) = min

‖v‖2=1
‖[Av,Bv]‖2,

where r is the dimension of ranK ∪ ranM . Combining these formulae gives the bounds.

We conclude, the matrix R in the GSVD is ill conditioned if either

• the norms of A and B differ by several magnitudes, or

• there is a vector w “close” to kerA ∩ kerB.

35

3 Generalized Eigenvalue Problem Solvers

Operation Function Flops

Compute ‖K‖F xLANSY n2

Compute ‖M‖F xLANSY n2

Scale mass matrix with s := ‖K‖F /‖M‖F xLASCL 1⁄2 n2

Cholesky decomposition A∗A = K xPSTRF 1⁄3 n3 + 4nrK − 2r2
K

Cholesky decomposition B∗B = sM xPSTRF 1⁄3 n3 + 4nrM − 2r2
M

GSVD – fGSVD(n)
Compute X := QR−1 xTRSM nr2

Table 3.5: Flop count for a GEP solver usingGSVD reductionwhere rK := rankK, rM := rankM ,
and r := rank [A∗, B∗].

In the latter case, we mean that both of

‖Av‖
‖A‖ ,

‖Bv‖
‖B‖ , ‖v‖ = 1, v ∈ ranK ∪ ranM,

are small. We can prevent the first case by scaling the matrices, so that ‖A‖ ≈ ‖B‖ whereas we
are unable to do anything about the second case because here, both A and B are ill conditioned.

Example 3.3. Let

A =

[
u 0
0 0

]
, B =

[
1 0
0 1

]
.

Observe that this is a symmetric standard eigenvalue problem. Using Theorem 3.3, we can
estimate the condition number of R as κ2(R) ≈ 1/u. Let s := ‖A‖2/‖B‖2 and let R′ be the upper
triangular matrix belonging to the scaled matrix pair (A, sB). Then κ2(R′) ≤

√
2. This is an

evident improvement of the condition number.

Example 3.4. Let

A =

[
1 0
0 u

]
, B =

[
u 0
0 1

]
.

For the matrix pairs (A,A) and (B,B) it holds that κ2(R) ≈ 1/u. Observe that ill-conditioned
matrices are a necessary but not a sufficient condition for a ill-conditioned R, e. g., for the matrix
pencil (A,B) we have κ2(R) ≤

√
2 (note the identical scaling of A and B).

3.3 Solving Standard Eigenvalue Problems

Solving SEPs is a standard problem in numerical linear algebra and subject to ongoing research.
The preprocessing reduces the matrix to upper Hessenberg form and for Hermitian matrices,
this means a reduction to real symmetric tridiagonal form. For general matrices, the Francis
QR algorithm reduces a given (upper Hessenberg) matrix to Schur form [Fra61] [MC, §7.5] and
selected eigenvectors can be computed with inverse iteration [MC, §7.6]. For Hermitian matrices
there are several solvers available in Lapack:

• Francis QR for Hermitian matrices [Dem97, §5.3.1] [MC, §8.3]

36

3.4 Computing the Generalized Singular Value Decomposition

• Divide-and-Conquer (DC) [Dem97, §5.3.3]

• Bisection in conjunction with inverse iteration (BI) [Dem97, §5.3.4]

• Multiple Relatively Robust Representations (MRRR) [Dhi97]

See [Dem+07] for a performance and accuracy comparison between these solvers. BI and MRRR
support computations of a subset of the eigenpairs. If only eigenvalues are desired, square-root-
free variants of the QR algorithm [Par98, §8.15] exist which should be faster than the methods
above (computing the square root of a floating point number is expensive, even with hardware
support).

3.4 Computing the Generalized Singular Value Decomposition

The GSVD can be computed either directly or indirectly by reduction to the CS decomposition.
In this section, we elaborate on both approaches. Note that both methods are backward stable.
Denoting quantities computed in finite precision with a tilde, it holds that

‖Ũ∗1 Ũ1 − I‖ ≤ u,

‖Ũ∗2 Ũ2 − I‖ ≤ u,

‖Q̃∗Q̃− I‖ ≤ u,

‖Ũ∗1AQ̃− Σ̃1R̃‖ ≤ u‖A‖,
‖Ũ∗2BQ̃− Σ̃2R̃‖ ≤ u‖B‖,

that is, to within round-off error, the computed matrices Û1, Û2, and Q̂ are unitary and the rows
of Û∗1AQ̂ and Û∗2BQ̂ are parallel [BD92, §5.1].

3.4.1 Direct Computation

There are algorithms for the direct computation of the GSVD. Of these, the algorithm in [BD92]
is implemented in Lapack. The problem can be preprocessed with the algorithm in [BZ93] (also
implemented in Lapack) recognizing the null spaces of the matrices, the intersection of the null
spaces, and reducing the remainder of the matrices to upper triangular form. The amount of
work of the preprocessing step depends on the dimension of the matrices and their rank so even
for square matrices, the flop count would be a polynomial in three variables. Thus we omit the
computational complexity analysis of the GSVD preprocessing.

3.4.2 Computation via QR Factorizations and CSD

The computation of the GSVD by means of QR factorizations and the CSD is straightforward
and shown in Algorithm 2 [MC, §8.7.5] [Bai92, §5.3]. The first step is an orthogonal factorization
of the matrix G = [AB] that reveals the rank r. Here, we used the QR decomposition with full
column pivoting because of the simplicity and the speed. In order to determine the rank, we only
have to examine the diagonal of the upper triangular factor. The second step is the calculation
of the CSD. The third step serves to compute the right-hand side unitary matrix Q from the
matrices V and R1. The last step is to revert the column permutations in the first step.

37

3 Generalized Eigenvalue Problem Solvers

In this implementation we determine the rank of R1 by comparing the the modulus of the
diagonal elements (R1)ii with nu‖G‖F . Because of the column pivoting, it holds that |(R1)ii| ≥
|(R1)jj | for all i < j so R1 has numerical rank r iff

|(R1)rr| > nu‖G‖F , |(R1)r+1,r+1| ≤ nu‖G‖F .

Input: A,B ∈ Cn,r
Output: GSVD of (A,B), U1, U2 ∈ Cn,n, Q ∈ Cr,r, Σ1,Σ2 ∈ Cn,r, R ∈ Cr,r
function gsvd-via-qr+csd(A,B)

G← [AB]
QR decomposition with column pivoting: Q1R1 ← GΠ
Determine the rank r of R1

2-by-1 CSD of Q1(:, 1 : r), get U1, U2, V , Σ1, Σ2

RQ decomposition:
[
0 R

]
Q2 ← V ∗R1(1 : r, :)

Revert column permutation: Q← ΠQ∗2

return U1, U2, Q, Σ1, Σ2, R
end function

Algorithm 2: Computation of the GSVD by using QR factorizations and the CS decomposition

In Table 3.6, we list the flop count for our implementation when all matrices are square and of
the same dimension. In this case, the overall flop count is

10/3n3 + 4n2r + 12nr2 + fC,S,V (r).

We can bound the run time in the non-trivial cases by considering r = 1 and r = n giving
approximately

3n3 + fC,S,V (1)

for the order of the minimum flop count

19n3 + fC,S,V (n)

for the maximum.

3.4.3 Computation via QR Factorizations and SVD

From a mathematical point of view, we can calculate the 2-by-1 CSD of a matrix

Q =

[r

n Q1

n Q2

]

by calculating the SVD of one of the blocks Q1, Q2 or by computing the SVD of both blocks
and by reordering the singular values and the singular vectors as necessary. Problems arise
if singular values are clustered [Sut09, §1.1] and moreover, this approach does not exploit the
fact that the SVD is dealing with blocks of an isometric matrix. The flop count of the GSVD
solver employing QR factorizations and the 2-by-1 CSD from Table 3.6 holds except for the flop

38

3.5 Numerical Experiments

Operation Function Flops

CopyK xLACPY n2

CopyM xLACPY n2

Determine ‖[A,B]‖F xLANGE 2n2

QR with full column pivoting xGEQP3 10⁄3 n3

Copy R1 xLACPY nr
Accumulate Q1 xORGQR 4nr2 − 2/3 r3

2-by-1 CSD xORCSD2BY1 8nr2− 4⁄3 r3 + fC,S,V (r)
Copy V ∗ xLACPY r2

Compute V ∗R1 xGEMM 2nr2

Compute RQ2 := V ∗R1 xGERQF 2nr2 + 2⁄3 r3

Accumulate Q2 xORGRQ 4n2r − 4nr2+ 4⁄3 r3

Reorder columns of Q2 xLAPMT n2

Table 3.6: Flop count for a GSVD solver using QR factorizations and the CS decomposition if all
matrices are square (required workspace: 2n2 + 17n− 4 units)

count of the CSD computation. When using only one SVD, then the CSD can be computed in
4nr2 +fΣ,V (r) flops (cf. Table 3.2). Thus with one SVD, the worst-case flop count (r = n) reduces
to ca. 17n3 + fΣ,V (n) flops. When computing two SVDs, there is a second bidiagonalization and
another SVD (no matrix accumulation) costing fΣ(r). Furthermore, the workspace size demand
reduces to 5nwith r = n.

3.5 Numerical Experiments

In this section, we will compare the wall clock times of the solvers above on a single CPU. The
wall clock time accuracy is one hundredth of a second. The tests are conducted with Netlib Blas
and Lapack.

We use the backward error ηHF,2(·, ·) defined in Section 2.1 to assess the accuracy of solutions
and we expect every solver to compute eigenpairs (λ, x) with

ηHF,2(λ, x) < nε,

where ε = 2u is the machine epsilon. We require the GSVD solvers to recognize matrix pencils
with non-trivial intersections of their null spaces. For non-regular eigenvectors x, we expect the
solvers to return eigenpairs (−1, x) and we measure their accuracy by computing

ηHF,2(−1, x) :=

√(‖Kx‖2
‖K‖F

)2

+

(‖Mx‖2
‖M‖F

)2

.

The test problems are all BCS structural engineering matrices [DGL89] with real symmetric
positive definite (SPD) or real symmetric positive semidefinite (SPSD) matrices and no more
than 3600 degrees of freedom as well as the NLEVP test problem “shaft” (stiffness and mass
matrix only) [Bet+13]. Overall there are 21 test problems and a list of them can be found in
Table 3.7. All pairs of test matrices were multiplied (in double precision) by an orthogonal
matrix from both sides to avoid artificially small backward errors due to diagonal matrices. All
test problems are solved in double and in single precision.

39

3 Generalized Eigenvalue Problem Solvers

Problem DOF

bcsstk01 48
bcsstk03 112
bcsstk04 132
bcsstk22 138
bcsstk05 153
Nlevp shaft 400
bcsstk06 420
bcsstk07 420
bcsstk20 485
bcsstk19 817
bcsstk08 1074

Problem DOF

bcsstk09 1083
bcsstk27 1224
bcsstk11 1473
bcsstk12 1473
bcsstk14 1806
bcsstk26 1922
bcsstk13 2003
bcsstk23 3134
bcsstk24 3562
bcsstk21 3600

Table 3.7: The name of the stiffness matrix for all dense test problems ordered by the number of
degrees of freedom.

We use performance profiles [DM02] to visualize the results; for every solver s and for different
values of τ , a performance profile shows the fraction ρs(τ) of all problems where the solver s is
no more than τ times slower than the fastest solver (the fastest solver may be different for every
problem). Inaccurate results or failure to compute the eigendecomposition are penalized by
assigning large, artificial wall clock times.

In Figure 3.1, we see the performance profiles of the four dense GEP solvers when computing
in single precision. Table 3.8 compares the relative wall clock times of the solvers considering
only successful test cases. Figure 3.2 and Table 3.9 contain the results for the double precision
calculations.
In Figure 3.1, one can see the standard solver and deflation solve only two thirds of all test

problems successfully whereas the GSVD-based solvers always compute all eigenpairs accurately.
If the standard and deflation solver compute accurate solutions, then they are also considerably
faster than the GSVD-based solvers. Considering only the successfully solved problems, we can
gather from Table 3.8 that the direct GSVD solver is on average twenty to thirty times slower
than the fastest solver while QR+CSD solver is only four times slower.
In double precision the results are similar except

• the deflation solver completes successfully for all test problems,

• the standard solver solves an additional problem accurately, and

• the direct GSVD solver is slowed down significantly.

In fact, for one problem the direct GSVD solver is 95 times slower than the fastest solver.
As expected, the standard solver failswhenever themassmatrix is rank-deficient. The deflation

solver fails whenever it detects non-trivial intersections of mass and stiffness matrix kernels
and this happened often in single precision because of the ill-conditioned stiffness matrices in
conjunction with rank-deficient mass matrices.

If a robust solver is needed, a GSVD-based solver using QR factorizations and CS decomposi-
tions is the method of choice. In double precision, the deflation solver is the method of choice
because of the superior performance.

40

3.5 Numerical Experiments

100 101 102
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

ρ
s
(τ
)

SEP reduction
SEP reduction with deflation
QR+CSD
Direct GSVD

Figure 3.1: Performance profiles dense GEP solvers (32 Bit)

Solver s min rp,s max rp,s mean rp,s median rp,s

SEP reduction 1.00 1.00 1.00 1.00
SEP reduction with deflation 1.00 3.09 1.62 1.42
QR+CSD 1.00 5.14 3.38 4.04
Direct GSVD 1.60 38.93 20.29 26.91

Table 3.8: Relative wall clock times for all solvers (32 Bit). Only successfully solved test cases
are considered, i. e., the solver did not terminate prematurely and for each eigenpair
the backward error was less than nε. The variables rp,s denote the performance ratio
[DM02, §2].

41

3 Generalized Eigenvalue Problem Solvers

100 101 102
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

ρ
s
(τ
)

SEP reduction
SEP reduction with deflation
QR+CSD
Direct GSVD

Figure 3.2: Performance profiles dense GEP solvers (64 Bit)

Solver s min rp,s max rp,s mean rp,s median rp,s

SEP reduction 1.00 1.00 1.00 1.00
SEP reduction with deflation 1.00 1.63 1.31 1.35
QR+CSD 1.59 5.34 4.06 4.72
Direct GSVD 1.54 95.01 32.21 37.44

Table 3.9: Relative wall clock times for all solvers (64 Bit). Only successfully solved test cases
are considered, i. e., the solver did not terminate prematurely and for each eigenpair
the backward error was less than nε. The variables rp,s denote the performance ratio
[DM02, §2].

42

3.6 Conclusion

Solver Workspace BC WC

Direct GSVD 1n2 + 6n+ 1 – –
SEP reduction 2n2 + 6n+ 1 5n3

QR+CSD 3n2 + 17n− 4 4n3 21n3

SEP reduction with deflation 4n2 + 6n+ 1 7n3 28n3

Table 3.10: The GEP solvers discussed in this chapter, sorted by workspace size, showing the
order of the best-case (BC) and the worst-case (WC) flop count.

3.6 Conclusion

Using the information from this chapter, we compiled workspace size, best-case, and worst-case
flop counts for the GEP solvers in Table 3.10. Comparing the numbers in Table 3.10 with the
results from Section 3.5, we have to concede that flop counts do not allow us to predict real-world
performance (on modern CPUs). Consider for example highest-order term for the worst-case
flop count. Judging by the coefficients, the speed of GSVD reduction (QR+CSD solver) and SEP
reduction with deflation should be comparable whereas the pure SEP reduction solver should
be significantly faster than both of them. This is not the case in practice.
Observe that in Figure 3.1 and Figure 3.2, greater robustness–the ability to deal with ill-

conditioned matrices or even singular pencils–is synonymous with lesser speed. This should
be kept in mind in the context of scientific computing and in finite element (FE) analyses, i. e.,
ill-conditioned matrices require more robust, more complex, slower algebraic solvers.

As we saw in Section 2.2, with consistent and conforming FE formulations the finite element
mass matrices are always conditioned well and the algebraic eigenvalues approximate the
continuous eigenvalues from above. In the face of the speed and simplicity of SEP reduction
and in consideration of the fact that the matrix of eigenvectors simultaneously diagonalizes
matrices, we question the use of ill-conditioned lumped mass matrices for mode superposition.
Another finding from the numerical experiments is that computing the GSVD directly is

slower than the GSVD calculation via QR factorizations and CSD for the test problems in this
thesis when Lapack is used.

The Ingenuity of the CSD Approach for Solving GEPs

Dense solvers preprocess the matrices before starting the iterative phase and for different solvers,
there are different standard reductions, e. g., Hermitian eigenvalue problems are reduced to real
tridiagonal form. Surely, the reduction of an Hermitian GEP to a pair of Hermitian tridiagonal
matrices is a good condensation of the original problem. In this section, we will show that a
solver for a GEP with HPSD matrices using QR factorizations and the CSD

• computes basis for the kerK ∩ kerM and its orthogonal complement,

• implicitly reduces the matrices of the regular GEP part of (K,M) to tridiagonal form

before the iterative phase. This is undoubtedly a very efficient condensed representation. Note
the simultaneous tridiagonalization of a pair of Hermitian indefinite matrices is also possible
[Gar+03] and if the mass matrix is non-singular, then a tridiagonal-diagonal reduction is possible
[Tis04].

43

3 Generalized Eigenvalue Problem Solvers

Consider a GEP solver using QR factorizations and the CSD, let A, B such that A∗A = K and
B∗B = M . For the thin QR factorization with full column pivoting, it holds

Q1R1 :=

[
A
B

]
Π,

where r = rank [A∗, B∗], Q1 ∈ C2n,r, R1 ∈ Cr,n, R1 has full row rank, and Π ∈ Cn,n is a
permutation matrix. Consider we compute an RQ decomposition of R1 so that

[
0 Rg

]
Q∗g := R1

and partition Qg as

Qg =
[n− r r

n Q0 Qs
]
.

The columns of Q0 are a basis for kerK ∩ kerM and the columns of Qs form a basis for the
orthogonal complement so that (Q∗sKQs, Q

∗
sMQs) is a regular matrix pencil (Theorem 1.8).

The 2-by-1 CSD solver bidiagonalizes Q1K and Q1M before starting the iterative phase. Let
U1B , U2B ∈ Cn,n, VB ∈ Cr be unitary matrices, let B1, B2 ∈ Cn,r be upper bidiagonal. Then

Q1 =

[
U1B 0

0 U2B

] [
B1

B2

]
V ∗B .

The accomplishment of this step is an implicit simultaneous tridiagonalization of the matrix
pencil (Q∗sKQs, Q

∗
sMQs). Let S := QsR

−1
g VB . Then

(S∗KS,S∗MS) = (B∗1B1, B
∗
2B2)

is a regular GEP of a pair of HPSD tridiagonal matrices. The transformation from a pair
of tridiagonal to bidiagonal matrices is trivial if the matrices are positive definite (Cholesky
decomposition can be used) but this is not the case for the problems in this thesis. Hence the
bidiagonal reduction is a non-trivial step.

Robust SEP Reduction with Deflation

In Section 3.5, we saw the deflation procedure had to terminate often in single precision because
the GEPs were singular. When solving GEPs with QR and CS decompositions, we are computing
an orthonormal basis for the regular part of the GEP. Combining these two facts, we propose
the following procedure:

• determine an orthonormal basis Qs for the regular part of a GEP,

• project the GEP onto spanQs,

• use SEP reduction with deflation,

• lift the eigenvectors.

This solver is backward stable, retains hermiticity, and allows computing a subset of the eigen-
values.

44

4 Projection Methods for Large, Sparse Generalized
Eigenvalue Problems

Given two subspaces S and C of Cn, a projection method [Saa11, §4.3] for an eigenvalue problem
tries to approximate an eigenpair (λ̃, x̃) so that x̃ ∈ S andKx̃− λ̃Mx̃ ⊥ C for some given inner
product. For Hermitian eigenvalue problems, orthogonal projection methods with S = C are the
most sensible choice. Examples for projections methods are Krylov subspace methods [Saa11,
§6], Jacobi-Davidson methods [Saa11, §8.4] [FSV98], and LOBPCG [Kny01].
In this chapter, we will discuss approaches for finding the eigenpairs with the smallest

eigenvalues of generalized eigenvalue problems (GEPs) Kx = λMx, where K,M ∈ Cn,n are
large, sparse, Hermitian positive semidefinite (HPSD) matrices and (K,M) is regular. Every
eigenvalue λ of such a problem is real and non-negative. Given λc > 0, we are looking for all
eigenpairs (λ, x) where λ ≤ λc.

4.1 Spectral Approximation for Large, Sparse Matrices

For large, sparse matrices we cannot use direct solvers because they are in practice guaranteed
to compute full matrices at some point. Thus, we need to approach the (generalized) eigenvalue
problem differently for these matrices. First of all, we will discuss basic concepts for solving
large, sparse standard eigenvalue problem. Afterwards, we will show how these techniques
apply to generalized eigenvalue problems.

Given a basis for a subspace, we can solve eigenvalue problems restricted to this subspace and
this method is called the Rayleigh-Ritz procedure (see Algorithm 3, [Saa11, §4.3.1] [Par98, §11.3]).
Intuitively, if the subspace is an eigenspace, then the Rayleigh-Ritz procedure should compute
exact eigenpairs and the following theorem confirms this belief.

Input: A ∈ Cn,n diagonalizable, S ∈ Cn,s with full column rank
Output: Approximate eigenpairs (λ̃i, x̃i) of A, x̃i ∈ ranS, i = 1, 2, . . . , s

function rayleigh-ritz(A,S)
Compute a thin QR decomposition: QR← S
AQ ← Q∗AQ
Compute eigendecomposition: XQΛQX

∗
Q ← AQ

Lift eigenvectors: X̃ ← QXQ

return ΛQ, X̃
end function

Algorithm 3: Rayleigh-Ritz procedure

Theorem 4.1 ([Saa11, §4.3.1]). Let A ∈ Cn,n be diagonalizable, let S ∈ Cn,m be isometric and such
that ranS is an invariant subspace ofA. Let (λ, xS) be an eigenpair of S∗AS. Then (λ, SxS) is an exact
eigenpair of A.

45

4 Projection Methods for Large, Sparse Generalized Eigenvalue Problems

We conclude that finding a subspace containing the eigenvectors of the desired eigenvalues is
equivalent to computing a subset of the eigenpairs directly. To that end, the following method is
helpful in finding a desired eigenvector.

Example 4.1 (Power method[MC, §7.3.1] [Saa11, §4.1.1] [Par98, §4.2]). Let A ∈ Cn,n, let (λi, xi)
be the eigenpairs of A, where ‖xi‖ = 1, i = 1, 2, . . . , n. Let v =

∑n
i=1 cixi, c1 6= 0. Assume that

|λ1| > |λ2| ≥ · · · ≥ |λn|. Thus, A has only simple eigenvalues and is diagonalizable. Finally, let
wk = Akv, let vk = wk/‖wk‖. Observe that

wk =

n∑

i=1

λki cixi.

Consequently, limk→∞ vk = x1.

The power method computes an eigenvector of the eigenvalue largest in modulus and it is
applicable to non-diagonalizable matrices as well. Note that in finite precision arithmetic, the
power method may converge to x1 even if c1 = 0 (v 6= 0); see [ASNA, §1.15]. We can quantify
how quickly the method improves a given vector.

Definition 4.1 (Convergence factor). Let m ≤ n, let A ∈ Cn,n have eigenvalues |λ1| > |λ2| ≥
· · · ≥ |λm|, where |λ1| > 0. The ratio

ρ :=
|λ2|
|λ1|

is called the convergence factor.

The smaller the convergence factor, the faster the power method converges to an eigenvector of
the eigenvalue largest in modulus. If this eigenvalue is a non-simple eigenvalue, then the power
method computes only one of the eigenvectors and if there are two distinct eigenvalues with
maximum modulus, then the power method calculates a linear combination of the eigenvectors
corresponding to these two eigenvalues. We can avoid these problems by iterating with multiple
vectors simultaneously and this will be discussed below. Furthermore, we can improve the
convergence factor by transforming the spectrum of A.
Let A ∈ Cn,n have eigenvalues |λ1| ≥ |λ2| ≥ · · · ≥ |λm|. Let σ ∈ C. Then the convergence

factor ρ1 of the power method applied to A− σI (shifted power method, [Saa11, §4.1.2]) is

ρ1 = max
i 6=1

|λi − σ|
|λ1 − σ|

.

The convergence factor ρ2 of the power method applied to A−1 (inverse iteration, [Saa11, §4.1.3])
is

ρ2 =
|λm|
|λm−1|

,

i. e., we are computing an eigenvector for the eigenvalue smallest in modulus. Combining
the two transformations above gives the shift-and-invert method (A− σI)−1 with convergence
factor ρ3:

ρ3 = max
i 6=m

|λm − σ|
|λi − σ|

.

Examples for more elaborate transformations are matrix polynomials (cf. [Saa11, §4.4, §7.1]) and
Cayley transformations (A− σI)−1(A− τI), τ ∈ C [Bai+00, §11.2.1] (see [Kre11, §17.2, §17.3] for
the effects on the spectrum).

46

4.1 Spectral Approximation for Large, Sparse Matrices

Observe that if σ ≈ λm, then one iteration of shift-and-invert computes a good approximation
to an eigenvector of λm so if we know exact eigenvalues, then we can compute eigenvectors and
vice versa. The Rayleigh quotient iteration tries to use this fact by selecting a different shift in
every iteration.

Definition 4.2 (Rayleigh quotient [Saa11, §1.9.1]). Let A ∈ Cn,n be normal. Then the Rayleigh
quotient r : Cn \ {0} → C is defined as

r(v) :=
v∗Av
v∗v

.

Note that if x is an eigenvector of A, then r(x) calculates the corresponding eigenvalue.
Furthermore, given A and a vector v 6= 0 the Rayleigh quotient minimizes ‖Av − σv‖2. Given
a vector v0 6= 0, the Rayleigh quotient iteration (RQI, [MC, §8.2.3] [Saa11, §4.1.3]) in Algorithm 4
computes an eigenpair (λ, x) unless a vk is a linear combination of eigenvectors corresponding
to different eigenvalues with the same modulus. If RQI converges, then it does so cubically for
normal matrices [Par74, §13].

Input: A ∈ Cn,n normal with eigenvalues |λ1| > |λ2| > · · · > |λm|, v0 ∈ Cn \ {0}
Output: An eigenpair of A

function rayleigh-quotient-iteration(A, v0)
for k = 0, 1, 2, . . . do

σk ← r(vk)
if (σk, vk) is sufficiently accurate then

return (σk, vk)
end if
wk+1 ← (A− σkI)−1vk
vk+1 ← wk+1/‖wk+1‖

end for
end function

Algorithm 4: Rayleigh quotient iteration (RQI)

So far we have discussed iterative methods using a single vector during the iteration. These
approaches have problems with distinct eigenvalues with identical modulus and they cannot
compute the eigenspace of semisimple eigenvalues. Subspace iteration (SI, [Saa11, §5]) applies
the power method to multiple linear independent vectors simultaneously and this rectifies the
shortcomings of methods working with a single vector listed above but it also introduces new
challenges. We have to avoid repeatedly computing eigenvectors of the dominant eigenvalues,
i. e., we have to use deflation [Saa11, §4.2.3] [Par98, §5]. In finite precision arithmetic, deflation
can be implemented in two ways. Hard locking [Saa11, §5.3.1] leaves converged eigenvectors
unchanged and orthogonalizes the vectors spanning the search space and the converged eigen-
vectors, e. g., bymeans of Householder reflections [MC, §5.1.2] or two iterations of Gram-Schmidt
(CGS2, [Gir+05, §3]). If the convergence criteria are too loose, hard locking may prevent the
convergence of other eigenvectors [Sta05, §5]. Soft locking avoids this problem by marking eigen-
vectors fulfilling the convergence criterion and subsequently these marked eigenvectors are not
subjected to inverse or power iterations but they are used for the Rayleigh-Ritz procedure.

A simple SI variant without locking can be found in Algorithm 5. It employs the Rayleigh-Ritz
procedure in every iteration which improves its convergence properties considerably as the
following theorem shows.

47

4 Projection Methods for Large, Sparse Generalized Eigenvalue Problems

Theorem 4.2. Let A ∈ Cn,n be normal with eigenpairs (λi, xi), where |λ1| ≤ |λ2| ≤ · · · ≤ |λn|,
i = 1, 2, . . . , n. Let Sk ∈ Cn,s have full column rank, let Pk be an orthogonal projector onto ranSk,
k = 0, 1, 2, The columns of the matrices Sk span search spaces improved by inverse iterations. If
xi 6∈ kerSk for all i and k, then there are non-negative constants ck,i such that

‖(I − Pk)xi‖2
‖xi‖2

≤ ck,iρki ,

where ρi is the convergence factor of the ith approximate eigenvector:

ρi =
|λi|
|λs+1|

.

Proof. The theorem follows from [Saa11, Theorem 5.2] and the following discussion up to
Equation (5.11) taking into account that A is normal.

Input: A ∈ Cn,n normal, S ∈ Cn,s with full column rank
Output: The eigenpairs corresponding to the s eigenvalues (including multiplicities) smallest

in modulus
function subspace-iteration(A,S0)

for k = 0, 1, 2, . . . do
Λ̃k, X̃k ← rayleigh-ritz(A,Sk)
if eigenpairs are sufficiently accurate then

return Λ̃k, X̃k

end if
Sk+1 ← A−1X̃k

end for
end function

Algorithm 5: Subspace iteration with Rayleigh-Ritz procedure

The shift-and-invert procedure computes an eigenvector of σ if the shift is an eigenvalue. Thus,
with SI and for any search space dimension, the search space may “collapse” into an eigenspace
if the shift is an eigenvalue. This can be prevented with the idea underlying the next theorem
[JKL99, §3].

Theorem 4.3. Let A ∈ Cn,n be normal with simple eigenvalues, let (λi, xi) be the eigenpairs of A,
i = 1, 2, . . . , n. Let σ = λj and ‖xj‖2 = 1 for some fixed j ∈ {1, 2, . . . , n}. Let

A =

[
A− σI xj
x∗j 0

]
.

Then A is normal as well as non-singular and it holds that

A
[
xi
0

]
= (λi − σ)

[
xi
0

]
, i 6= j,

A
[
xj
1

]
=

[
xj
1

]
.

The eigenvalues of A are 1, −1, and λi − σ, i 6= j. If A is Hermitian, then A is Hermitian, too.

48

4.1 Spectral Approximation for Large, Sparse Matrices

Proof. For xi 6= xj , it holds that

A
[
xi
0

]
=

[
A− σI xj
x∗j 0

] [
xi
0

]
=

[
(λi − σ)xi
x∗jxi

]
.

Since A is normal, x∗jxi = 0 so we proved the first equality. The second equality can be shown
to be correct by substitution.

Next, we show that A is normal and non-singular. The two equations in the theorem readily
show n of the n+ 1 eigenpairs and with careful thought, we can construct another vector being
orthogonal to all of these eigenvectors for which it holds that

A
[
−xj

1

]
= −

[
−xj

1

]
.

We found n+ 1 orthogonal eigenvectors. Thus, A is normal [MC, Corollary 7.1.4]. As we can
see, the n+ 1 eigenvalues of A are 1, −1, and λi − σ, i 6= j. A had only simple eigenvalues so
λi − σ 6= 0, i 6= j, and consequently, A has full rank.

The theorem can be generalized to semisimple eigenvalues by using an orthonormal basis
of the eigenspace belonging to σ = λj , cf. [JL99]. Moreover, we can increase the numerical
robustness when solving systems of equations with A by examining the magnitude of |λi − σ|,
i 6= j.
For generalized eigenvalue problems with HPD matrices, we can use the theory above by

setting A := M−1K. Note that we can avoid the need for mass matrix inverses, e. g., consider
shift-and-invert:

(M−1K − σI)−1 = (M−1K − σM−1M)−1 = (K − σM)−1M.

As long as the matrix pencil is regular and as long as the shift is not a generalized eigenvalue,
we can solve systems of linear equations (K − σM)x = b. Furthermore, if the mass matrix ifM
is HPD, then the Rayleigh quotient for GEPs is

r(v) :=
v∗Kv
v∗Mv

.

Eigenvectors for regular GEPs with HPSD matrices are still orthogonal but with respect to a
different inner product. For non-standard inner products, CGS2 provides numerically stable
orthogonalization [Roz+12, §5]. Pseudocode for the Rayleigh-Ritz procedure for GEPs can be
found in Algorithm 6 and the generalization of Theorem 4.3 is given below.

Theorem 4.4 ([JL99, §3]). Let K,M ∈ Cn,n, where K is Hermitian, M is Hermitian positive def-
inite, and such that (K,M) has only simple eigenvalues. Let (λi, xi) be the eigenpairs of (K,M),
i = 1, 2, . . . , n. Let σ = λj and x∗jMxj = 1 for some fixed j ∈ {1, 2, . . . , n}. Let

A =

[
K − σM Mxj
x∗jM 0

]
.

Then A is Hermitian and it holds that

A
[
xi
0

]
= (λi − σ)

[
xi
0

]
, i 6= j,

A
[
xj
1

]
=

[
xj
1

]
.

The eigenvalues of A are 1, −1, and λi − σ, i 6= j.

49

4 Projection Methods for Large, Sparse Generalized Eigenvalue Problems

Note that the subspace iteration method (SIM, [Bat96, §11.6]) is subspace iteration with A =
K−1M and the Rayleigh-Ritz procedure for GEPs (see Algorithm 6).

Input: K,M ∈ Cn,n Hermitian, S ∈ Cn,s with full column rank
Output: Approximate eigenpairs (λ̃i, x̃i) of (K,M), x̃i ∈ ranS, i = 1, 2, . . . , s

function rayleigh-ritz(K,M,S)
Compute a thin QR decomposition: QR← S
KQ ← Q∗KQ
MQ ← Q∗MQ

SolveKQXQ = MQXQΛQ
Lift eigenvectors: X̃ ← QXQ

return ΛQ, X̃
end function

Algorithm 6: Rayleigh-Ritz procedure for regular GEPs

4.2 Improving Numerical Stability

In this section, we shed light on how identical scaling of thematrices in amatrix pair and diagonal
scalings can improve the numerical stability by reducing condition numbers of eigenvalues.

Theorem 4.5 ([Ste01, Theorem 4.12]). Let (λ, x) be an eigenpair of the Hermitian matrix pencil
(K,M), where λ is a simple eigenvalue. Then the condition number of λ is

‖x‖22√
|x∗Kx|2 + |x∗Mx|2

.

Similar to the condition number of the matrix R in Theorem 3.3, the condition number of the
eigenvalue can be large if the norms of the matricesK andM differ in magnitude. We conclude,
similar norms of the matrices in a pencil never worsen the condition numbers of the eigenvalues.
Next, we try to decide on a strategy for balancing the matrix pencil by means of a diagonal

scaling (DKD,DMD). We can determine D either by analyzing both matrices simultaneously
or by analyzing only one of the matrices. A motivation for the latter strategy is given by the next
theorem which shows that as soon as one of the matrices in the pencil is well-conditioned, all
eigenvectors will be close to orthogonal.

Theorem 4.6 ([Nak12, §3]). Let λ be an eigenvalue of the Hermitian matrix pencil (K,M) with multi-
plicitym, whereM is Hermitian positive definite. LetX be the matrix ofm eigenvectors corresponding
to the eigenvalue λ, let X∗MX = I . Let σ1 ≥ σ2 ≥ · · · ≥ σm > 0 be the singular values of X∗X .
Then the condition numbers of λ under Hermitian definite perturbations ∆K, ∆M are

(1 + |λ|)σi, i = 1, 2, . . . ,m,

where ‖∆K‖2, ‖∆M‖2 ≤ 1. It holds σ1/σm ≤ κ2(M).

The Jacobi scalingD of anHermitianmatrixA = [aij] is chosen so that the ith diagonal element
of DAD is one whenever aii 6= 0. Experiments with real SPD matrices show that Jacobi scaling

50

4.3 Automated Multilevel Substructuring

never enlarges the condition number and the reduction of the condition number is comparable
to an iterative algorithm [BM12, §2]. Considering that mass matrices in finite element analysis
are real SPSD and often diagonal, we can acquire modified GEPs with orthogonal eigenvectors.

In [War81], a method for a diagonal scaling for (non-Hermitian) matrix pencils is proposed so
that themodulus of all entries are of the samemagnitude (this is the balancing algorithm forGEPs
in the Lapack function xGGBAL). Unfortunately, this method may worsen the accuracy of the
computed eigenvalues [LvD06, §6]. Another approach is to use diagonal matricesD`,Dr in order
to equilibrate the Euclidean norms of every row and every column to one and in the experiments
in [LvD06], this method never reduces the accuracy of the computed eigenvalues and greatly
improves it for diagonalizable matrix pencils. For Hermitian matrix pencils, D := D` = Dr

and D can be computed directly. Note that this scaling may have adverse effects if it is used in
conjunction with GSVD-based GEP solvers that scale one of the matrices in the pencil such that
‖K‖ ≈ ‖M‖.

In finite precision arithmetic, the entries of D should be rounded to the nearest power of 2 (to
the nearest power of the base of the floating point arithmetic) in order to avoid round-off errors.
Moreover, the balancing methods should ignore very small diagonal entries (Jacobi scaling) or
rows small in norm (for the balancing in [LvD06]), respectively, e. g., with Jacobi scaling, the
diagonal entries di of D could be chosen as

di :=





nearest-power-of-2
(√

maxj ajj
aii

)
if aii > nεmaxj ajj

1, otherwise,

where ε is the machine epsilon.

4.3 Automated Multilevel Substructuring

Given λc > 0 and a GEP with HPD matrices, the automated multilevel substructuring method
(AMLS, [Kap01; Gao+08; BL04]) computes approximations to all eigenpairs (λ, x), where λ ≤ λc.
It is well suited for problems with matrices arising from finite element analysis in structural
mechanics and low accuracy demands. In this case, AMLS delivers results considerably faster
than shift-and-invert Lanczos (SIL) [Kap01, §7] [Gao+08, §4]. AMLS is based on component
mode synthesis (CMS, [CB68]).
Initially, AMLS orders mass and stiffness matrix to give them a certain block structure and

this block structure is retained by all transformations applied by AMLS to the matrix pencil.
Let S ∈ Cn,m have full column rank. Throughout this section, ASij denotes the i, j block of a
matrix A after a congruence transformation involving S. Note that there is a change of basis
whenever a congruence transformation is executed because there is a matrix multiplied from
the right-hand side to A: Ax = ASS†x, where S† is a generalized inverse of S. In the style of
the naming convention for matrices, it holds that x = SxS .

4.3.1 Nested Dissection

Nested dissection (ND, [Geo73; LRT79] [MC, §11.7]) is a fill-in reducing matrix ordering. In
Figure 4.1, a matrix Awith one level of substructuring is shown. The blocks A1,1 and A2,2 are
called substructure blocks; the block A3,3 is called coupling block. For minimal fill-in and better
processing speed,A1,1 andA2,2 should be comparable in dimension whileA3,3 is small. A3,3 can
be empty and in this case,A is block diagonal. ND can be applied recursively to the substructure

51

4 Projection Methods for Large, Sparse Generalized Eigenvalue Problems

A1,1 A1,3

A2,2 A2,3

A3,1 A3,2 A3,3







Figure 4.1: A real symmetric matrix Awith one level of nested dissection ordering. The blocks
A1,1, and A2,2 are substructure blocks; the block A3,3 is the coupling block.

blocks and an example can be found in Figure 4.2. This figure shows a ND ordering with two
levels with substructure blocks A1,1, A2,2, A4,4, A5,5, and A6,6; the blocks A3,3, A7,7, and A8,8

are coupling blocks. The first level of substructuring consists of the blocks A1:3,1:3, A4:7,4:7, and
A8,8.

From the point of view of graph theory, a nested dissection ordering is a minimal vertex cut.
Let G = (V,E) be the unweighted graph induced by the matrix at hand, let V1, V2, S ⊆ V be
disjoint, V = V1 ∪ V2 ∪ S, and let 1/2 ≤ α < 1. Then the minimal vertex cut problem means
finding V1, V2, and S such that |S| is minimal, |V1|, |V2| ≤ αn, and no vertex in V1 is adjacent to
a vertex in V2 [LRT79, pp. 347 sq.].

4.3.2 Algorithm

Pseudocode for the AMLS method can be found in Algorithm 7. Initially, AMLS computes a
nested dissection ordering of the graph induced by mass and stiffness matrix. Let Π ∈ Cn,n
be the permutation matrix corresponding to the ND ordering of the induced graph. With the
naming convention above, we have

KΠ = Π∗KΠ,MΠ = Π∗MΠ

giving the transformed matrix pencilKΠxΠ = λMΠxΠ. Throughout this section, let ` denote
the number of blocks on the diagonal and let ni be the dimension of the blocksKΠ

ii ,MΠ
ii .

The second step in AMLS is the computation of a block LDLT decomposition of the stiffness
matrix such that LDL∗ := KΠ. The factorization is used to block diagonalize K giving the
GEP KLxL = λMLxL, where KL = L−1KΠL−∗ = D and ML = L−1MΠL−∗. Note that L
is a lower unit triangular matrix possessing the same block structure as KΠ and MΠ (unit
triangular meaning with ones one the diagonal). Moreover,K is positive definite so the LDLT
decomposition exists without pivoting.
During the third step, AMLS solves all block diagonal GEPs

KL
jjx

j
k = λjkM

L
jjx

j
k, j = 1, 2, . . . , `, k = 1, 2, . . . , nj .

For each block diagonal GEP, we introduce matrices

ΛLj = diag(λj1, λ
j
2, . . . , λ

j
nj

) ∈ Cnj ,nj ,

XL
j = [xj1, x

j
2, . . . , x

j
nj

] ∈ Cnj ,nj

52

4.3 Automated Multilevel Substructuring

A1,1

A2,2

A3,1 A3,2 A3,3 sym.

A4,4

A5,5

A6,6

A7,4 A7,5 A7,6 A7,7

A8,1 A8,2 A8,3 A8,4 A8,5 A8,6 A8,7 A8,8







Figure 4.2: A real symmetric matrix Awith two levels of nested dissection ordering.

53

4 Projection Methods for Large, Sparse Generalized Eigenvalue Problems

such thatKL
jjX

L
j = ML

jjX
L
j ΛLj . Finally, let

Λ̃L = diag(ΛL1 ,Λ
L
2 , . . . ,Λ

L
`),

X̃L = diag(XL
1 , X

L
2 , . . . , X

L
`).

Note that we just lifted the approximate eigenvectors xjk to Cn so Λ̃L and X̃L contain approxi-
mations to the eigenpairs of the matrix pencil (KL,ML).
As the fourth step, AMLS performs modal truncation. Let (λ̃Li , x̃

L
i), i = 1, 2, . . . , n, be the

approximate eigenpairs of (KL,ML) calculated in the previous step, i. e., x̃Li is the ith column of
X̃L. Given λc and a tolerance cs ≥ 1, AMLS retains all eigenvectors x̃Li where the corresponding
eigenvalue is less or equal to csλc. Specifically, let I = {i = 1, 2, . . . , n | λ̃Li ≤ csλc}. Then AMLS
constructs a matrix S with vectors x̃Li , i ∈ I, as columns.
Next, the method executes the Rayleigh-Ritz procedure on the subspace ranS giving eigen-

pairs (λS , xS) of (KS ,MS). Finally, the method reverses the basis changes in order to acquire
approximate eigenpairs (λ̃, x̃) of (K,M). It holds λ̃ = λS , x̃ = ΠL−∗SxS .

Input: K,M ∈ Cn,n HPD, λc > 0, cs ≥ 1

Output: Approximate eigenpairs (λ̃, x̃), where λ̃ ≤ λc
function amls(K,M, λc, cs)

Compute nested dissection ordering Π with ` diagonal blocks
KΠ ← Π∗KΠ
MΠ ← Π∗MΠ

Compute a block LDLT decomposition: LDL∗ ← K
KL ← L−1KΠL−∗

ML ← L−1MΠL−∗

for all j = 1, 2, . . . , ` do
SolveKL

jjX
L
j = ML

jjX
L
j ΛLj

end for

Λ̃L ← diag(ΛL1 ,Λ
L
2 , . . . ,Λ

L
`)

X̃L ← diag(XL
1 , X

L
2 , . . . , X

L
`)

Execute modal truncation, get matrix S
Execute Rayleigh-Ritz procedure: Λ̃, X̃L ← rayleigh-ritz(K,M,S)

return Λ̃, ΠL−∗X̃L

end function
Algorithm 7: Pseudocode for the automated multilevel substructuring method (AMLS)

4.3.3 Remarks

Recall that a nested dissection ordering of a real symmetric matrix A corresponds to the a
minimal vertex separator in the unweighted graph induced by A. AMLS operates on pairs
of matrices so a vertex separator for one of the matrices may not be a vertex separator for

54

4.3 Automated Multilevel Substructuring

the other matrix and vice versa. For matrix pairs originating from conforming finite element
formulations with first-order polynomial ansatz functions, the unweighted graphs induced by
mass and stiffness matrix are identical and we may use either matrix to calculate a minimal
vertex separator. For general matrix pairs, a proper ordering can be ensured by calculating a
nested dissection ordering of the matrix |K|+ |M |.

The LDLT decomposition of a singular stiffness matrix is still possible if all singular diagonal
blocks are permuted to the lower right. This operation increases fill-in and enlarges the size of
the final diagonal block.

In the description above, the modal truncation precedes the projection on the subspace ranS
but these two operations are interchangeable. Let s = |I|, let P ∈ Cn,s have the vectors ei, i ∈ I ,
as columns. Then S = X̃LP and furthermore S∗AS = P ∗(X̃L)∗AX̃LP . Clearly, (X̃L)∗AX̃L

can be calculated as soon as AMLS solved the GEPs on the block diagonal in step three. Now
if every vector x̃Li is M -normal, i. e., (x̃Li)∗Mx̃Li = 1, then the mass matrix (X̃L)∗MLX̃L has
identity matrices on its block diagonal and (X̃L)∗KLX̃L = Λ̃L.
AMLS is not a geometric domain decomposition method [Smi97]. If the matrices originate

from a finite element discretization, then the nested dissection ordering does correspond to
a partition in the domain underlying the continuous problem but it is only after the LDLT
decomposition that substructures are examined. Let φhi ∈ Vh ⊂ H1

0 (Ω), i = 1, 2, . . . , n, be the
finite element ansatz functions, cf. Section 2.2. Then the entries of the mass and stiffness matrix
are the inner products of the ansatz functions:

K = [a(φhi , φ
h
j)]ni,j=1,

M = [(φhi , φ
h
j)]ni,j=1.

With the proper ansatz functions, the matricesKL,ML can be generated directly by the finite
element method. Accordingly, recall the congruence transformations applied to the original
matrices:

KL = L−1Π∗KΠL−∗,

ML = L−1Π∗MΠL−∗.

ThenKL andML are generated by the finite element method if the ansatz functions

ϕhi :=

n∑

j=1

(L−1)ijφ
h
π(j), i = 1, 2, . . . , n,

are used. L−1 is block lower triangular but nevertheless, some of the modified ansatz functions
ϕhi may span the whole domain. Consequently, it would be more apt to consider AMLS as an
algebraic multigrid method [McC94, §4].
Modal truncation is a common way to perform modal reduction and thus sometimes called

standard modal reduction in contrast to the more elaborate optimal modal reduction [GBP04].

4.3.4 Exact Eigenpairs

The AMLS method does not provide mechanisms to directly control the approximation proper-
ties of the computed eigenpairs. Strictly speaking, AMLS is not an eigensolver. Nevertheless,
AMLS can be used to quickly generate starting subspaces for one of the iterative methods
in Section 4.1, e. g., the subspace iteration method [Bat96, §11.6] which has proven to be a
well-grounded choice [YVC13] [CMM16, §6].

55

4 Projection Methods for Large, Sparse Generalized Eigenvalue Problems

4.4 Eigenvalues and GEPs with Block Matrices

In this section we deal with matrix pencils (K,M), where K andM possess the same block
structure. Given an eigenpair of a GEP on the block diagonal of (K,M), we will analyze how
well this eigenpair approximates an exact eigenvalue of (K,M). To that end, we will calculate
perturbation bounds for these approximate eigenvalues, once without utilizing eigenvectors
and a second time with eigenvectors.
Throughout this section, mass and stiffness matrix are 2 × 2 block matrices with identical

partitions, (λ̃, x̃) is an approximate eigenpair of (K,M), and r = Kx̃ − λ̃Mx̃ is the residual.
Both x̃ and r are partitioned conformally toK andM . Hence

K =

[
K11 K12

K21 K22

]
,M =

[
M11 M12

M21 M22

]
, x̃ =

[
x̃1

x̃2

]
, r =

[
r1

r2

]
.

Since we want to examine how well the eigenvalues of a GEP on the block diagonal approximate
an exact eigenvalue λ of (K,M), we will assume that (λ̃, x̃1) is an exact eigenpair of (K11,M11)
so x̃2 = 0 and

r =

[
0

K21x̃1 − λ̃M21x̃1

]
.

4.4.1 Eigenvalue Perturbation Bounds without Eigenvectors

The following theorem is shown for the sake of completeness and allows us to bound the
perturbation of an eigenvalue from a GEP on the block diagonal.

Theorem 4.7 ([Li+11, Corollary 2.10]). Let K,M ∈ Cn,n be 2 × 2 block matrices, where K is
Hermitian and M is Hermitian positive definite. Let λ̃1 ≤ λ̃2 ≤ · · · ≤ λ̃m be the eigenvalues of
(K11,M11). Let

A = M
−1/2
11 K11M

−1/2
11 ,

E = M
−1/2
11 K12M

−1/2
22 ,

F = M
−1/2
11 M12M

−1/2
22 .

Then there arem eigenvalues λ1 ≤ λ2 ≤ · · · ≤ λm of (K,M) such that

|λ̃i − λi| ≤
‖E −AF‖2√

1− ‖F‖22
, i = 1, 2, . . . ,m.

The next theorem requires all eigenvalues of all GEPs on the block diagonal and delivers
sharper and more intuitive bounds.

Theorem 4.8 ([Li+11, Corollary 2.9]). LetK,M ∈ Cn,n be 2×2 block matrices, whereK is Hermitian
and M is Hermitian positive definite. Let λ1 ≤ λ2 ≤ · · · ≤ λn be the eigenvalues of (K,M), let
λ̃1 ≤ λ̃2 ≤ · · · ≤ λ̃n be the union of eigenvalues of (K11,M11) and (K22,M22). Let

E = M
−1/2
11 K12M

−1/2
22 ,

F = M
−1/2
11 M12M

−1/2
22 .

Then
|λ̃i − λi| ≤ ‖E − λ̃iF‖2, i = 1, 2, . . . , n.

56

4.4 Eigenvalues and GEPs with Block Matrices

Note that if the matrix of eigenvectors X1 of (K11,M11) and the matrix of eigenvectors X2 of
(K22,M22) are available and if X∗1M11X1 = I , X∗2M22X2 = I , then E and F in Theorem 4.8 can
be replaced with

E = X∗1K12X2,

F = X∗1M12X2.

Consider the scenario where only one of the matrices is perturbed on the off-diagonal. If
K12 = 0,M12 6= 0, then

|λ̃i − λi| ≤ |λ̃i|‖F‖2 ⇔
|λ̃i − λi|
|λ̃i|

≤ ‖F‖2,

i. e., a relative error is induced. IfK12 6= 0,M12 = 0, then an absolute error is induced because

|λ̃i − λi| ≤ ‖E‖2.

In this thesis, we seek the smallest eigenvalues of a matrix pencil with HPSD matrices. Conse-
quently, absolute errors are less desirable than relative errors (if ‖E‖ and ‖F‖ are similar).

4.4.2 Eigenvalue Perturbation Bounds with Eigenvectors

Perturbation bounds on an eigenvalue using eigenvalues and eigenvectors can be calculated by
means of the forward error in Theorem 2.5. The forward error bounds in Theorem 2.5 are based
on the Frobenius norm of the mass and the stiffness matrices but the forward error calculation is
slightly simpler if we use the spectral norm instead and if r is orthogonal to x̃, then the bounds
are also slightly sharper by a factor

√
2. Moreover, using the spectral norm eases the comparison

with the bounds doing without eigenvectors in the previous section.

Theorem 4.9. Let (λ̃, x̃) be an approximate eigenpair of the Hermitian matrix pencil (K,M), where λ̃
is real finite and ‖x̃‖2 = 1. Let r = Kx̃− λ̃Mx̃. Then

η2,2(λ̃, x̃) =
‖r‖2√

‖K‖22 + |λ̃|2‖M‖22
.

Proof. Use [AA11, Theorem 3.10] and [AA11, Eq. (1)] with Λm = [‖K‖2, |λ̃|‖M‖2].

Corollary 4.1. Let (λ̃, x̃) be an approximate eigenpair of the Hermitian matrix pencil (K,M), where λ̃
is real infinite and ‖x̃‖2 = 1. Then

η2,2(λ̃, x̃) =
1

‖M‖2
‖Mx̃‖2.

Theorem 4.10. Let (λ, x) be an eigenpair of the Hermitian matrix pencil (K,M), where λ is simple
and finite. Then we can compute the condition number κ2,2(λ, x) with

κ2,2(λ, x) =
‖x‖22
|x∗Mx|

√
‖K‖22 + |λ|2‖M‖22.

Proof. Use [AAK11, Eq. (10)] in conjunction with the weight vector ωrel(2).

57

4 Projection Methods for Large, Sparse Generalized Eigenvalue Problems

Theorem 4.11. Let (λ̃, x̃) be an approximate eigenpair of an Hermitian matrix pencil (K,M), where λ̃
is a simple, real finite eigenvalue and ‖x̃‖2 = 1. Let r = Kx̃− λ̃Mx̃. Then there is an exact eigenvalue
λ of (K,M) such that

|λ̃− λ| ≤ 1

|x̃∗Mx̃| ‖r‖2.

Proof. The error bound is the product of the backward error η2,2(λ̃, x̃) and the corresponding
condition number κ2,2(λ̃, x̃).

Judging by the norm of the residual in the forward error bound, the observation that off-
diagonal blocks in the stiffness matrix cause an absolute error while the off-diagonal blocks in
the mass matrix induce a relative error can be made here, too.
As an immediate improvement over the eigenvector-free perturbation bounds , the forward

error can be calculated for all Hermitian mass matrices instead of only Hermitian positive
definite mass matrices. Moreover, the forward error can cope with the scenario where (λ, x)
is an eigenpair of (K,M) and off-diagonal perturbations are applied to (K,M), i. e., we seek
perturbation bounds for λwith respect to the matrix pencil (K̃, M̃), where

K̃ =

[
K11 K12 + E∗

K21 + E K22

]
, M̃ =

[
M11 M12 + F ∗

M21 + F M22

]
.

A disadvantage of the forward error bounds is the fact that they apply only to simple eigenvalues
whereas the eigenvector-free bounds are not impaired by a multiple eigenvalue.

4.4.3 Application to AMLS

AMLS computes approximate eigenpairs of a matrix pencil by solving all GEPs on the block
diagonal and the results in this section can be applied to compute perturbation bounds for an
eigenvalue of a GEP on the block diagonal. Recall that the stiffness matrix is block diagonal when
the approximate eigenpairs are computed. HenceK12 = 0,K21 = 0, the residual simplifies to

r =

[
0

−λ̃M21x̃1

]
,

theM -norm of x̃ is then
|x̃∗Mx̃| = |x̃∗1M11x̃1|

and substituting these equations into the forward error of Theorem 4.11 yields

|λ̃− λ| ≤ 1

|x̃∗1M11x̃1|
‖λ̃M21x̃1‖2.

AMLS users seek the smallest eigenvalues of a matrix pencil and the stiffness matrix is block
diagonal because of a previously computed block LDLT decomposition. Consequently, there is
only a relative error associated with each approximate eigenvalue. We conclude that the block
LDLT decomposition is an important step in the AMLS method to ensure good approximations
to the eigenvalues of the matrix pencil (K,M).
During the modal truncation step, AMLS selects all approximate eigenpairs (λ̃, x̃) where

λ̃ ≤ csλc. Given cs, we want to determine the maximum value of ‖M21x̃1‖2 such that the
perturbation of the exact eigenvalue λc is no larger than csλc, that is, we miss none of the desired

58

4.4 Eigenvalues and GEPs with Block Matrices

eigenpairs. This means that if λ̃ = csλc and if λ = λc, then the right-hand side of this expression
should be no larger than the difference between csλc and λc:

|λ̃− λ| ≤ 1

|x̃∗1M11x̃1|
‖λ̃M21x̃1‖2

!
≤ (cs − 1)λc.

After proper shifting of the terms and substituting λ̃ = csλc, it follows that

‖M21x̃1‖2 ≤ |x̃∗1M11x̃1|
cs − 1

cs
.

In the AMLS method, this inequality can be used to check if cs is sufficiently large.
Consider the case cs →∞. Then

‖M21x̃1‖2 ≤ |x̃∗1M11x̃1|.
Furthermore, assume the perturbation bound holds for eigenpairs of (K22,M22), as well, i. e.,

‖M∗21x̃2‖2 ≤ |x̃∗2M22x̃2|.
With this choice of cs, the modal truncation step in AMLS will retain all approximate eigenpairs
from the GEPs on the block diagonal so that the computed search space for the eigenpairs is all
of Cn. Consequently, the AMLS method will return exact eigenpairs. Now observe that there
are HPSD matrices violating these two conditions.
Example 4.2 (A HPSD matrix where ‖M21‖2 ≥ ‖M11‖2). Let c ≥ 0, let δ ∈ {0, 1}. Then

M =

[
1 c
c c2 + δ

]

is positive semidefinite (δ = 0) or positive definite (δ = 1), respectively.
In this section, we considered perturbation bounds for a single approximate eigenpair and

although AMLS is guaranteed to calculate exact eigenpairs for huge values of cs, the error
bounds do not capture this behavior. With this thought, we want to highlight that perturbation
bounds for single eigenpairs are intrinsically limited in their predictive abilities, especially if a
large number of approximate eigenpairs is used to construct a subspace.

4.4.4 Minimizing Eigenvalue Perturbation

In this section, we discuss ways to permute a matrix pair in order to acquire a pair of identically
partitioned 2× 2 block matrices where the diagonal blocks are similar in dimension and where
the eigenvalue perturbation due to the off-diagonal blocks is minimized.
For now, consider the case of a single HPSD matrix A instead of a matrix pencil. From a

linear algebra point of view, a 2× 2 block matrix without off-diagonal entries is a block diagonal
matrix with two clearly distinguishable invariant subspaces. It follows that we have to find
approximate subspaces if we want to transform A into a matrix with block structure and the
better the approximation, the smaller the off-diagonal entries. In practice, we cannot exploit this
observation because do not know invariant subspaces.
Let us consider the problem from the point of view of graph theory: a 2 × 2 block matrix

without off-diagonal entries corresponds to a graph with two partitions such that there is no
edge connecting the two partitions. Usually a matrix does not possess such an ordering so
instead we can minimize the number of edges connecting the two partitions or the sum of
weights of these edges. This is an instance of the minimum bisection problem (or the k-way
graph partitioning problem for k = 2).

59

4 Projection Methods for Large, Sparse Generalized Eigenvalue Problems

Definition 4.3 (Minimum bisection problem [Bul+15, §2]). Given an undirected simple graph
G = (V,E) with non-negative edge weights and |V | even, the goal of the minimum bisection
problem is to find disjoint vertex subsets V1, V2 ⊂ V such that V = V1 ∪ V2 and |V1| = |V2|
minimizing the cost of edges connecting the subsets V1 and V2:

z∗ := min
V1,V2⊂V
V=V1∪̇V2

|V1|=|V2|

∑

{i,j}∈E
i∈V1,j∈V2

c({i, j}).

This problem is mathematically difficult and hard to approximate [Bul+15, §2.3]. Nevertheless,
a variety of heuristics quickly deliver good results in practice. Interestingly, “the most successful
heuristic for partitioning large graphs is the multilevel graph partitioning approach” [Bul+15, §6]
(emphasis mine). In this thesis, we deal with matrices arising from finite element matrices
yet we do not assume availability of the mesh that was used to generate these matrices. If the
mesh is available but not the matrices, then mesh partitioning [Bul+15, §3.1] can be applied. If
additionally geometric information is accessible, then geometric partitioning [Bul+15, §4.5] can
be employed.

Wewant to relate the objective valueminimized by bisection to a norm of the off-diagonal block
A21. The graph algorithm minimizes a sum of non-negative edge weights so a corresponding
norm must be an absolute vector norm applied to a matrix [HJ12, §5.7], e. g., a vector p-norm.
Naturally, we can use the Frobenius norm here (the Euclidean vector norm) which integrates
nicely into the backward error of Section 2.1. To that end, let

c({i, j}) = |aij |2.

It follows ‖A21‖2F = z∗. We would like to note that if every edge has the same non-zero weight,
then we are minimizing the number of edges connecting the partitions V1 and V2; A21 will be as
sparse as possible.
Next, consider matrix pencils (K,M). Let K = [kij], M = [mij]. We will try to determine

weights that minimize eigenvalue perturbation of eigenpairs (λ̃, x̃) of (K11,M11). It holds that

|λ̃− λ| ≤ 1

|x̃∗1M11x̃1|
‖K21x̃1 − λ̃M21x̃1‖2.

Strictly speaking, we have to minimize the right-hand size for all vectors x̃1 in the desired
subspace over all possible matrix permutations–this is already an intractable problem for small
n. Hence we will gradually simplify the expression and as a start, let us assume theM -norm of
x̃ is constant:

|λ̃− λ| ≤ c‖K21x̃1 − λ̃M21x̃1‖2, c ∈ R+.

Furthermore, we assumeK21x̃1 ⊥M21x̃1 so

‖K21x̃1 − λ̃M21x̃1‖22 = ‖K21x̃1‖22 + ‖λ̃M21x̃1‖22.

Moreover, we consider the Frobenius norm of the off-diagonal blocks:

‖K21x̃1 − λ̃M21x̃1‖22 ≤ ‖K21‖2F + ‖λ̃M21‖2F .

We still have to pick a value for λ̃. In our opinion, any choice 0 ≤ λ̃ ≤ λc is sensible, e. g., λ̃ = 0
consistently minimizes the absolute error (unless K is diagonal). Thus, we introduce a user-
provided parameter λw (“w” for “weight”) yielding the following expression to be optimized:

‖K21‖2F + λ2
w‖M21‖2F .

60

4.4 Eigenvalues and GEPs with Block Matrices

We can minimize this expression by solving the minimum bisection problem on the graph
G = (V,E) with nodes V = {1, 2, . . . , n}, edges E = {{i, j} : |kij | + |mij | 6= 0}, and edge
weights

c({i, j}) = |kij |2 + λ2
w|mij |2.

We want to mention that matrix pairs arising conforming FE formulations possess the same
pattern of non-zero entries whereas with mass lumping, the mass matrix is diagonal.

4.4.5 Backward Error Bounds

IfK21 = 0,M21 = 0, then every exact eigenpair of (Kii,Mii) will be an eigenpair of (K,M) after
lifting the eigenvectors and in this case, it makes sense to compute the eigenpairs of (Kii,Mii),
i = 1, 2, to full possible accuracy. On the other hand, if the residual of the approximate eigenpair
will be large, e. g., if ‖K−1/2

11 K12K
−1/2
22 ‖2 ≈ 1 and ‖K‖ � ‖M‖, then we can save some effort

by not computing (λ̃, x̃1) to full accuracy. In this section, we analyze the effect of off-diagonal
blocks on the backward error of (λ̃, x̃).
Recall that

ηHF,2(λ̃, x̃) =

√√√√ 2‖r‖22 − |r∗x̃|
2

‖K‖2F + |λ̃|2‖M‖2F
and

r =

[
0

K21x̃1 − λ̃M21x̃1

]
.

Since r∗x̃ = 0 and since ‖K‖F , ‖M‖F are known, we have to determineK21x̃1 andM21x̃1. For
every matrix A, it holds that ‖A‖2 ≤ ‖A‖F . Consequently,

0 ≤‖K21x̃1‖2 ≤ ‖K21‖F ,
0 ≤‖M21x̃1‖2 ≤ ‖M21‖F .

This is all we can prove without additional assumptions. Thus, we assumeK21x̃1 ⊥M21x̃1 and
that the off-diagonal blocks have a uniform singular value distribution, i. e., σi = 1/p(p− i+ 1)σ1,
i = 1, 2, . . . , p, where p is the minimum of the number of rows and the number of columns. For
a matrix Awith these singular values, it follows that

‖A‖2F =

p∑

i=1

σ2
i =

p∑

i=1

σ2
1

1

p2
i2 = σ2

1

1

p2

p(p+ 1)(2p+ 1)

6
≈ σ2

1

p

3
.

Thus,

σ1 ≈
√

3

p
‖A‖F .

The expected value of ‖Av‖2 with a uniform singular value distribution, ‖v‖2 = 1, is then

E[‖Av‖2] ≈ 1/2σ1.

Therefore,

E
[
‖r‖22

]
= ‖K21x̃1‖22+‖λ̃M21x̃1‖22 ≈

1

4

(
σ1(K21)2 + σ1(λ̃M21)2

)
=

1

4

3

p

(
‖K21‖2F + ‖λ̃M21‖2F

)
.

61

4 Projection Methods for Large, Sparse Generalized Eigenvalue Problems

In summary, under the assumptions that the off-diagonal blocks have a uniform singular value
distribution and thatK21x̃1 is always orthogonal toM21x̃1, the following expression gives the
expected backward error for an approximate eigenpair:

E
[
ηHF,2(λ̃, x̃)

]
=

√√√√ 2E[‖r‖22]

‖K‖2F + |λ̃|2‖M‖2F
=

√√√√1

p

3

2

‖K21‖2F + |λ̃|2‖M21‖2F
‖K‖2F + |λ̃|2‖M‖2F

.

So far, we assumed (λ̃, x̃1) is an exact eigenpair of (K11,M11) and now we analyze the case
when this is not true, i. e., x̃2 = 0 still holds butK11x̃1 − λ̃M11x̃1 6= 0.

Theorem 4.12. Let (λ̃, x̃) be an approximate eigenpair of (K,M), where ‖x̃‖2 = 1 and x̃2 = 0. Let
ηmax be a positive constant such that

√√√√ 2E[‖r‖22]

‖K‖2F + |λ̃|2‖M‖2F
≤ ηmax.

If
ηHF,2(λ̃, x̃1) ≤ ηmax

with respect to the matrix pencil (K11,M11), then

E
[
ηHF,2(λ̃, x̃)

]
≤
√

2ηmax.

Proof. It holds that

ηHF,2(λ̃, x̃) =

√√√√ 2‖r‖22 − |r∗x̃|
2

‖K‖2F + |λ̃|2‖M‖2F
=

√√√√2‖r1‖22 + 2‖r2‖22 − |r∗1 x̃1|2

‖K‖2F + |λ̃|2‖M‖2F
.

Observe that
√√√√ 2‖r1‖22 − |r∗1 x̃1|2

‖K‖2F + |λ̃|2‖M‖2F
≤

√√√√ 2‖r1‖22 − |r∗1 x̃1|2

‖K11‖2F + |λ̃|2‖M11‖2F
= ηHF,2(λ̃, x̃1) ≤ ηmax.

By assumption, √√√√ 2E[‖r2‖22]

‖K‖2F + |λ̃|2‖M‖2F
≤ ηmax.

Substituting the upper bounds into the backward error completes the proof.

If (λ̃, x̃1) is not an exact eigenpair of (K11,M11), then this does not cause a large backward
error of (λ̃, x̃) as long as ηHF,2(λ̃, x̃) ≈ ηHF,2(λ̃, x̃). The applicability of this insight hinges on
the difficulty of determining the constant ηmax. In consideration of the fact that we seek all
eigenpairs (λ, x) with eigenvalues 0 ≤ λ ≤ λc, we can maximize

‖K21‖2F + |λ̃|2‖M21‖2F
‖K‖2F + |λ̃|2‖M‖2F

62

4.5 A Multilevel Eigensolver

subject to 0 ≤ λ̃ ≤ λc. Treating this expression as as a rational function quickly delivers the
solutions:

ηmax =





√
1

p

3

2

‖K21‖F
‖K‖F

if ‖M21‖ = 0 or ‖K21‖F
‖M21‖F

≥ ‖K‖F‖M‖F
,

√
1

p

3

2

‖K21‖2F + λ2
c‖M21‖2F

‖K‖2F + λ2
c‖M‖2F

otherwise.

4.5 A Multilevel Eigensolver

AMLS is rightfully called the “automated multilevel substructuring” method. It is also right-
fully not called the “automated multilevel eigensolver” method because it does not utilize the
substructuring in any way other than acquiring many small GEPs on the block diagonal of the
transformed mass and stiffness matrices. Additionally, there are no feedback mechanisms and
no control systems to improve the generated search space or to keep its dimension in check. In
this section, we will investigate a multilevel eigensolver method without these weaknesses.

4.5.1 Developing AMLS Further

When designing the eigensolver, we make the following assumptions:

• The user seeks eigenpairs (in contrast to eigenvalues),

• mass and stiffness matrix are given explicitly (in contrast to matrix-free methods),

• mass and stiffness matrix are HPSD, and

• the matrix pencil is regular.

The latter assumption is needed if shift-and-invert is employed. At least ten years have passed
since the inception of AMLS and in the meantime, the following capabilities and insights were
gained:

• Numerically stable solution of GEPs with HPSD matrices (Chapter 3),

• quickly computable structured backward error bounds for eigenpairs (Section 2.1),

• quickly computable forward error bounds for eigenvalues (Section 2.1),

• improving numerical stability (Section 4.2),

• the condition numbers of a multiple eigenvalue of an Hermitian GEP [Nak12],

• convergence issues caused by (hard) locking [Sta05].

Let us now gather some ideas for the new solver. Since we want to design a multilevel solver,
we can apply the divide-and-conquer paradigm [Cor+09, §2.3.1]. Furthermore, a multilevel
eigensolver will generate many intermediate, approximate results so it might be appropriate
to use single precision even if the problem is given in double precision (cf. [Lan+06]). The
numerically stable GEP solvers allow us to treat the matrix pencils (K,M) and (M,K) as equals,
e. g., we can compute the largest and the smallest eigenvalues of a matrix pencil with the same

63

4 Projection Methods for Large, Sparse Generalized Eigenvalue Problems

code by swapping matrices. The backward error allows us to perform controlled modifications
of the problem at hand and the forward error can be handy when selecting shifts.
Let us now step back from AMLS. We might consider using other matrix decompositions

than the block LDLT decomposition or no factorization at all. Similarly, we should consider
other graph partitionings than vertex separators (nested dissection). Moreover, without a
decomposition step we are free to use any graph partitioning algorithm instead of only fill-in
reducing orderings. We could examine off-diagonal blocks. In order to improve approximate
eigenvalues, we could start to use shift-and-invert or even polynomial acceleration [Saa11, §5.3.3]).
From a practical point of view, we have a vested interest in removing the LDLT decomposition
because this decomposition creates much fill-in (see also [HL07, p. 7]). Additionally, the mass
matrix is often diagonal and without a decomposition step, we can use a diagonal scaling to
turn the mass matrix into the identity matrix, acquiring orthogonal eigenvectors in the process.

4.5.2 Description

We propose the following eigensolver for GEPs with HPSD matrices finding all eigenpairs
(λ, x) where λ ≤ λc, λc > 0. As dense eigensolvers, we use one of the solvers from Chapter 3.
To subdivide the initial problem, we use the method outlined in Section 4.4.4 and we apply
divide-and-conquer on the two partitions and start a recursion until the diagonal blocks are
sufficiently small to be treated as dense problems. After we computed solutions to the GEPs on
the block diagonal, we have approximate eigenpairs which can be improved with the methods
of Section 4.1.

Pseudocode for the proposed method can be found in Algorithm 8. If the matrices are small
enough, we solve the GEP directly with a dense solver and return. Otherwise, we partition
the matrix as described in Section 4.4.4. Obviously, it makes no sense to find highly accurate
solutions of the GEPs (KΠ

ii ,M
Π
ii), i = 1, 2, if ‖KΠ

21‖ or ‖M21‖ are large in comparison ‖Kii‖ and
‖Mii‖, i = 1, 2, respectively. Hence we calculate the maximum expected backward error ηmax,0

based on the analysis in Section 4.4.5 and set

η′max := max(ηmax, ηmax,0),

where η′max is the maximum backward error for the subproblems. In the subsequent combine
phase of Algorithm 8, we need to ensure that we find all eigenpairs (λ, x), where λ ≤ λc, we
need prescribe accuracy requirements, and we need to define how we improve approximate
eigenpairs. We can guarantee to find all desired eigenpairs by calculating and analyzing the
forward error, selecting every approximate eigenpair (λ̃, x̃), where

λ̃− |λ̃− λ| ≤ λc.

The accuracy requirements consist of upper bounds for backward as well as forward error:

ηHF,2(λ̃, x̃) ≤ ηmax, |λ̃− λ| ≤ ∆λmax.

Note that the multilevel eigensolver is able to to approximate a certain number of eigenpairs
as well as finding the eigenpairs with the largest eigenvalues of a pencil if the pencil (M,K) is
considered instead.

4.5.3 More Robust AMLS with Intermediate GEP Solves

The success of the AMLS method depends massively on the choice of the parameter cs: if cs
is too small, the eigenvalue approximations are unusable but if cs is too large, the computed

64

4.5 A Multilevel Eigensolver

Input: K,M ∈ Cn,n HPSD, λc > 0, weighting 0 ≤ λw ≤ λc, 0 < ηmax ≤ 1

Output: Approximate eigenpairs (λ̃, x̃), where λ̃ ≤ λc and ηHF,2(λ̃, x̃) ≤ ηmax

function multilevel-gep-solve(K,M, λc, λw, ηmax)
Terminate recursion?
if n is small enough then

SolveKX = MXΛ directly
return (Λ, X)

end if

Divide: subdivide problem
Compute undirected graph G, see Section 4.4.4
Partition matrices, get permutation matrix Π
KΠ ← Π∗KΠ
MΠ ← Π∗MΠ

Conquer: recursion
Compute maximum backward error η′max for subproblems
Λ̃1, X̃1 ← multilevel-gep-solve(KΠ

11,M
Π
11, λc, λw, η

′
max)

Λ̃2, X̃2 ← multilevel-gep-solve(KΠ
22,M

Π
22, λc, λw, η

′
max)

Combine: construct accurate eigenpairs of (K,M)

S ← diag(X̃1, X̃2)
Improve the search space ranS

Execute Rayleigh-Ritz procedure: Λ̃, X̃ ← rayleigh-ritz(K,M,S)

return Λ̃, ΠX̃
end function
Algorithm 8: Pseudocode for a multilevel eigensolver for generalized eigenvalue problems

65

4 Projection Methods for Large, Sparse Generalized Eigenvalue Problems

search space may be extremely large. Based on the observations in this section, we suggest a
small change in AMLS to reduce the dependence on cs.
AMLS is a method based on the divide-and-conquer paradigm. In order to highlight this

point, we rewrote the AMLS pseudocode from Algorithm 7 as a divide-and-conquer algorithm
in Algorithm 9 (the assembly of the matricesKL,ML, andL is explained below). Comparing the
pseudocode of themultilevel eigensolver with AMLS reveals there are only twomajor differences
between these two methods. The first difference is that the AMLS method decomposes the
stiffness matrix whereas the multilevel eigensolver does not. Consequently, the AMLS method
must use a fill-in reducing orderingwhereas themultilevel eigensolver is free to use any ordering.
Moreover, AMLS has to perform additional congruence transformation not present in the
multilevel eigensolver. The second major difference can be found in the combine phase of the
solvers. Ignoring the assembly of the matrices KL,ML, and L related to the stiffness matrix
decomposition, AMLS does apparently not utilize the Rayleigh-Ritz procedure or spectral
approximation methods.
We think this is a real drawback because applying the Rayleigh-Ritz procedure during the

recursion improves the eigenpair approximations and most importantly, it helps the solver to
recognize excessively large search spaces. Furthermore, it makes AMLS more robust in the
presence of strongly clustered eigenvalues. We conjecture, AMLS can be turned into a robust,
true black-box solver with this modification. We want to mention, the Rayleigh-Ritz procedure
does not have to be executed in every recursive AMLS call–just often enough to prevent the
worst-case scenarios discussed above.

In this paragraph we discuss the recursive computation of the block matrices in Algorithm 9.
The LDLT decomposition of the stiffness matrixKΠ yields the lower unit triangular matrix L
and the diagonal matrix D = KL (unit triangular meaning with ones on the diagonal). Given
L11, L22,KL

11, andKL
22, the matrixKL can be completed:

KL
33 = KΠ

33 −KΠ
31(KΠ

11)−1(KΠ
31)∗ −KΠ

32(KΠ
22)−1(KΠ

32)∗,

KL = diag(D11, D22, D33).

Keep in mind thatKΠ
ii = LiiK

L
iiL
∗
ii, i = 1, 2. In practice we should store the Cholesky decompo-

sition ofDii = KL
ii instead of the diagonal block itself since their inverses are needed repeatedly.

Now we can calculate the missing entries of L:

L31 = KΠ
31L
−∗
11 D

−1
11 ,

L32 = KΠ
32L
−∗
22 D

−1
11 ,

L33 = I.

These calculations allow us to assemble L:

L =



L11

L22

L31 L32 L33


 .

At last, we can compute entries ofML:

ML
31 = M31L

−∗
11 − L31M

L
11,

ML
32 = M32L

−∗
22 − L32M

L
22,

ML
33 = M33 −ML

31L
∗
31 −ML

32L
∗
32 − L31L

−1
11 M

∗
31 − L32L

−1
22 M

∗
32.

66

4.6 The Multilevel Eigensolver in Practice

Thus,

ML =



ML

11 (ML
31)∗

ML
22 (ML

32)∗

ML
31 ML

32 ML
33


 .

4.6 The Multilevel Eigensolver in Practice

We implemented themultilevel eigensolver fromSection 4.5 in Python 2 using IntelMKL,NumPy,
SciPy, and the graph partitioning software Metis [KK98]. We use the backward error ηHF,2(·, ·)
from Section 2.1 and its corresponding condition number κF,2(·, ·). Dense GEPs are solved by
the deflation solver from Chapter 3, we balance the matrix pencil using the method in [LvD06]
(see Section 4.2), and we improve approximate eigenpairs using the Cayley transformation
(K − σM)−1(K − τM) from Section 4.1 with σ = 0 and τ in the largest approximate eigenvalue
in the search space.

4.6.1 Adaptive Backward Error Control is Unnecessary

One of the findings used for the multilevel eigensolver was the theory from Section 4.4.5 to
control the backward error in the subproblems, i. e., given the Frobenius norm of the off-diagonal
blocks of mass and stiffness matrix, we were able to bound the expected backward error of
an approximate eigenpair under certain conditions. To avoid unnecessary computations, the
idea was to avoid reducing the backward error of the approximate eigenpairs (λ̃i, x̃i) of the
subproblems below the expected backward error, where λ̃i was less or equal to the largest
desired eigenvalue:

λ̃i ≤ λc ⇒ ηHF,2(λ̃i, x̃i)
!
≤ ηmax.

In the subproblems the smallest eigenvalues are approximated from above for a GEP with
HPSD matrices and initially, the solver did not respect this property. In fact, the solver removed
an approxmate eigenpair (λ̃i, x̃i) from the search space when λ̃i > csλc where cs ≥ 1 is a given
constant. This caused the eigensolver to miss desired eigenpairs and in order to fix this issue,
we made the implementation control the backward and forward error, i. e., every approximate
eigenpair had to satisfy the following conditions if the approximate eigenvalue was below the
cutoff:

λ̃i ≤ λc ⇒ ηHF,2(λ̃i, x̃i)
!
≤ ηmax, ∆λ̃i/̃λi

!
≤ 1,

where ∆λi is the forward error of λ̃i 6= 0.
In our implementation and for our test problems, reducing the relative forward error below

one sped up the solver and reduced the number of test problemswithmissing desired eigenpairs.
As a side effect of the forward error control, the backward error of the approximate eigenpairs
was almost always below the single precision epsilon ε ≈ 1.19 · 10−7. The single precision
epsilon in turn is in every test problem much smaller than the maximum allowed backward
error. Clearly, adaptive backward error control is superfluous.

4.6.2 Bisection is Unnecessary

In Section 4.4.4, we derived a method to minimize the Frobenius norm of the off-diagonal blocks
in aHermitian 2×2 blockmatrix based on graph bisection. Disabling bisection had no significant
effect on the multilevel GEP solver in our test problems.

67

4 Projection Methods for Large, Sparse Generalized Eigenvalue Problems

Input: K,M ∈ Cn,n HPD, λc > 0, cs ≥ 1

Output: permutation matrix Π, matrix L,KL,ML, approximate eigenpairs (λ̃, x̃)
function amls(K,M, λc, cs)
Terminate recursion?
if n is small enough then

SolveKX = MXΛ directly
Perform modal truncation, get Λ′, X ′
return I , I ,K,M , Λ′, X ′

end if

Divide: subdivide problem
Compute nested dissection ordering P with two substructure blocks
KP ← P ∗KP
MP ← P ∗MP

Conquer: recursion
Π11, L11,K

L
11,M

L
11, Λ̃1, X̃1 ← amls(KP

11,M
P
11, λc, cs)

Π22, L22,K
L
22,M

L
22, Λ̃2, X̃2 ← amls(KP

22,M
P
22, λc, cs)

Combine: combine permutations
Π← diag(Π11,Π22, I)
KΠ ← Π∗KPΠ
MΠ ← Π∗MPΠ

Combine: complete matrices (see text for details)
CompleteKL

Complete L
CompleteML

Combine: compute eigendecomposition
SolveKL

33X
L
3 = ML

33X
L
3 ΛL3

Perform modal truncation, get Λ̃3, X̃3

X̃ ← diag(X̃1, X̃2, X̃3)

Λ̃← diag(Λ̃1, Λ̃2, Λ̃3)

return PΠ, L,KL,ML, Λ̃, X̃
end function

Algorithm 9: Pseudocode for the automatedmultilevel substructuringmethod (AMLS) as divide-
and-conquer algorithm. The computation of the matrices KL, ML, and L are
explained in the text.

68

4.6 The Multilevel Eigensolver in Practice

4.6.3 Solving System of Linear Equations with the Schur Complement

The eigensolver improves the approximate eigenpairs by means of subspace iterations. In every
iteration, systems of linear equations (SLEs)Kx = b, x, b ∈ Cn,n, need to be solved and because
there may be a large number of different right-hand side vectors b, the author preferred direct
solvers in the implementation. Initially, the solver used sparse LU decompositions provided by
SuperLU [Li05] but for the larger test matrices, e. g., bmwcra_st1 (n = 148, 700), thematrix factors
had a memory footprint of several gigabytes. We were willing to trade time for predictable
memory demands and decided to replace the sparse LU decompositions with direct substructur-
ing [SBG96, §4.1] using sequences of Schur complements. Nowadays, iterative substructuring
methods are more common.

Definition 4.4 (Schur complement [HJ12, §0.25]). Let A ∈ Cn,n be Hermitian and partitioned as
as a 2× 2 block matrix, where none of the blocks are empty:

A =

[
A11 A12

A21 A22

]
.

Let A11 be non-singular. The matrix

S := A22 −A∗12A
−1
11 A12

is called the Schur complement of A11 in A.

The Schur complement occurs naturally during block Gaussian elimination:
[

I 0
−A21A

−1
11 I

] [
A11 A12

A21 A22

] [
I −A−1

11 A
∗
21

0 I

]
=

[
A11 0
0 S

]
.

Consider the SLE Ax = b and partition x, b conformally to A such that
[
A11 A12

A21 A22

] [
x1

x2

]
=

[
b1
b2

]
.

There exists a closed expression for x using the inverse of A11 and its Schur complement S. Let
L be the lower triangular matrix block diagonalizing A:

L =

[
I 0

−A21A
−1
11 I

]
.

Then x is [
x1

x2

]
=

[
A−1

11 b1 −A−1
11 A

∗
21S
−1(b2 −A21A

−1
11 b1)

S−1(b2 −A21A
−1
11 b1)

]
.

Observe that in order to solve the SLE Ax = b, we need to be able to solve SLEs A11x
′ = b′ and

Sx′′ = b′′ but there is no need to store L or explicitly factorizeA11. So far we did not explain how
we solve SLEs A11x

′ = b′. If A11 is small enough, the we can solve this SLE directly. Otherwise
we can use the Schur complement again, e. g., we partition A11 into a 2 × 2 block matrix and
compute the Schur complement of the upper left block in A11. This approach yields a recursive
method that can be found in and Algorithm 10.
In the previous section, we noted that the matrix ordering computed by graph bisection did

not have a significant positive effect on the multilevel eigensolver. Now let us interpret this
result liberally to mean that the multilevel GEP solver is not affected by matrix orderings in

69

4 Projection Methods for Large, Sparse Generalized Eigenvalue Problems

Input: A ∈ Cn,n full rank, Hermitianwith 2×2 block structure, conformally partitioned b ∈ Cn,n
Output: The Schur complement of A11

function solve-SLE(A, b)
if A is small enough then

Solve Ax = b directly
return x

end if

Compute the Schur complement
Solve A11P = A12: P ← solve-SLE(A11, A12)
S ← A22 −A21P

Solve Ax = b
Solve A11u = b1: u← solve-SLE(A, b1)
v ← b2 −A21u:
Solve Sx2 = v directly
Solve A11w = A12x2: w ← solve-SLE(A11, v)
x1 ← u− w

return x
end function

Algorithm 10: Solving SLEs by recursively computing Schur complements

practice and consider that we recursively compute nested dissection orderings forK,K11,K22,
and so on such that 


K11 0 K13

0 K22 K23

K31 K32 K33


 .

IfK33 is small in dimension compared toK, then we can permanently store all Schur comple-
ments needed in Algorithm 10 without too much overhead. Moreover, if there are multiple
right-hand sides b, then the cost of computing the Schur complements amortizes over the run
time of the solver.

4.6.4 Numerical Experiments

All test matrices are part of the University of Florida Sparse Matrix Collection [DH11]. Note that
only the test problemswith the stiffnessmatrices gyro_k and bcsstk36 comewith a corresponding
mass matrix (gyro_m, bcsstm36); all other test problems are unfortunately standard eigenvalue
problems.

We tested the implementation on a computer with 8GB RAM and an Amd Athlon II X2 270
CPU. The results can be seen in Table 4.1. The first column contains the name of the stiffness
matrix of every test problem and the second column shows the number of degrees of freedom.
The third column contains the cutoff values λc > 0 while the fourth column shows the number
of computed eigenpairs (λ, x) with λ ≤ λc. WC time is the wall-clock time taken by the solver and
the last column contains the CPU time.1 Wall-clock time and CPU time are given in minutes.
1CPU time is the amount of time the CPU was busy executing instructions of a program. For computers with more
than one CPU core, this value may be larger than the wall-clock time.

70

4.6 The Multilevel Eigensolver in Practice

Problem n λc nc WC time CPU time

bcsstk17 10,974 1.0·102 518 0.3 0.5
bcsstk18 11,948 2.0·101 951 1.5 2.7
bcsstk25 15,439 1.0·102 929 3.9 7.2
gyro_k 17,361 1.0·1015 431 10.0 17.7
bcsstk36 23,052 1.0·106 1,073 11.2 20.1
vanbody 47,072 2.0·101 1,265 22.8 40.9
ct20stif 52,329 2.0·103 628 27.3 49.4
bmw7st_1 141,347 1.0·10−2 79 191.0 370.5
bmwcra_1 148,770 1.0·103 39 121.0 235.0

Table 4.1: The test results of a multilevel GEP solver implementation with direct substructuring
on a computer with dual-core CPU and 8GB RAM. All times are given in minutes.

We consider an approximate eigenpair converged if its backward error is less than the single
precision epsilon ε ≈ 1.19 · 10−7 and if its relative forward error is less than one.

Observe that there is a jump in the time taken by the solver when computing eigenpairs of
the matrix pair (gyro_k, gyro_m). The multilevel GEP solver selects the eigenvectors spanning
the search space based on their corresponding eigenvalue and for this pencil, the eigenvalues
are densely clustered. For example, the dimension of the final search space of this pencil is 2356
and there are 431 desired eigenpairs while for the matrix pair (bcsstk36, bcsstm36) the final
search space has dimension 2664 containing more than 1,000 desired eigenpairs. The solver
also took an unusually long time to completion when finding eigenpairs of the stiffness matrix
bcw7st_1. Here, the solver struggled and failed to reduce the relative forward error below 1
with ten subspace iterations. Usually, the solver requires no more than three subspace iterations
in any subproblem to meet the convergence criterion. We did not count this as a solver failure
because all eigenpairs had a backward error less than the double precision epsilon.

We also tested the implementation on a cluster node with two Amd Opteron 2218 CPUs and
16GB virtual memory limit. The results can be found in Table 4.2. We used the additional
memory to increase the number of desired eigenpairs to about 1,000. When computing eigenpairs
of bmw7st_1, the solver tried to reduce the relative forward error below 1 and failed again to do
so with ten subspace iterations taking 6.6 hours wall-clock time (the maximum backward error
of the desired eigenpairs was below the double precision epsilon). With the usual three subspace
iterations, the eigensolver would have taken only four hours overall for finding the desired
eigenpairs. The eigensolver has to cope with a comparatively large search space of dimension
1759 when finding eigenpairs of bmwcra_1. On the upside, the wall-clock time required by the
solver does not seem to be quadratic (or worse) in the number of desired eigenpairs.

71

4 Projection Methods for Large, Sparse Generalized Eigenvalue Problems

Problem n λc nc WC time CPU time

bcsstk17 10,974 1.0·102 518 0.5 1.2
bcsstk18 11,948 2.0·101 951 2.2 7.4
bcsstk25 15,439 1.0·102 929 5.7 19.6
gyro_k 17,361 1.0·1016 2,360 103.5 350.5
bcsstk36 23,052 1.0·106 1,073 17.4 54.8
vanbody 47,072 2.0·101 1,265 34.1 110.5
ct20stif 52,329 5.0·103 947 61.0 195.9
bmw7st_1 141,347 1.0·100 1,053 499.8 1,661.7
bmwcra_1 148,770 1.0·104 124 623.3 2,038.9

Table 4.2: The test results of a multilevel GEP solver implementation with direct substructuring
on a computer with two dual-core CPUs and 16GB RAM. All times are given in
minutes.

72

5 Conclusion

In thesis we discussed the numerical solution of generalized eigenvalue problem (GEPs)Kx =
λMx, whereK,M are Hermitian positive semidefinite (HPSD). All results were directly appli-
cable to real-world problems.
In Chapter 2 we presented a Hermiticity-preserving backward error for simple eigenvalues

that can be computed in linear time and its corresponding condition number. We elaborated on
the finite element method (FEM) as a source of GEPs with HPSD matrices.

In Chapter 3 we discussed solvers for dense GEPs with HPSD matrices. The standard solver
is fast and preserves Hermiticity but it requires positive definite mass matrices and is only
conditionally stable. Deflating the infinite eigenvalues allows the standard solver to be used
for problems with singular mass matrices, as well, but it does not guarantee a small backward
error either and the deflation procedure cannot handle singular matrix pencils. Solvers based
on the generalized singular value decomposition (GSVD) are backward stable, they preserve
Hermiticity and semidefiniteness, and they automatically determine the regular part of a GEP.
We implemented these solvers and found out that the standard solver always computes accurate
solutions in our test with real-world matrices if the infinite eigenvalues are deflated from the
matrix pencil. The deflation overhead is small in our tests. Moreover, in all test problems, the
fastest GSVD solver was no more than five times slower than the fastest solver. As a byproduct
of our benchmarks, we determined computing the GSVD by means of QR factorizations and the
CS decomposition is much faster than directly calculating the GSVD in Netlib Lapack. We also
showed how the deflation procedure must be modified in order to be able to handle singular
matrix pencils.
In Chapter 4 we discussed ways to compute all eigenpairs (λ, x), λ ≤ λc, with large, sparse,

Hermitian positive definite (HPD) matrices, where λc > 0 is a user-provided value. We briefly
presented standardmethods for spectral of approximation of large, sparse matrices andmethods
for improving numerical stability. Afterwards we reviewed the automated multilevel substruc-
turing method (AMLS). AMLS is often able to quickly deliver good approximations to the
eigenpairs (λ, x), where λ ≤ λc. Next we analyzed the perturbation of exact eigenvalues of
blocks on the diagonal caused by off-diagonal blocks in 2× 2 block matrices and we acquired
slightly stronger perturbation bounds if eigenvectors are available. When AMLS computes the
approximate eigenvalues, the stiffness matrix is block diagonal and with the analysis of perturba-
tion bounds of 2× 2 block matrices, we were able to conclude that this property is helpful when
approximating small eigenvalues. Furthermore, we described a method to minimize eigenvalue
perturbation by off-diagonal blocks and we calculated its impact on the backward error.

Finally, we used the results to propose a new multilevel eigensolver based on the divide-and-
conquer paradigm, the perturbation results for 2× 2 block matrices, and the dense GEP solvers
from Chapter 3. We implemented the solver and tested it with large, sparse matrices arising
from finite element discretizations in structural engineering. We found out that we can ignore
the results on eigenvalue perturbation in 2× 2 block matrices. Nevertheless, on a computer with
a dual-core CPU and 8GB RAM, the solver calculated eigenpairs of problems with up to 150,000
degrees of freedom in about three hours. On a cluster node with two dual-core CPUs and 16GB
virtual memory limit, we computed up to 1,000 eigenpairs on the same set of problems in less
than eleven hours.

73

Bibliography

[AA11] B. Adhikari and R. Alam. “On backward errors of structured polynomial eigen-
problems solved by structure preserving linearizations”. In: Linear Algebra and its
Applications 434.9 (2011), pp. 1989–2017. issn: 0024-3795. doi: 10.1016/j.laa.2010.
12.014.

[AAK11] B. Adhikari, R. Alam, and D. Kressner. “Structured eigenvalue condition numbers
and linearizations for matrix polynomials”. In: Linear Algebra and its Applications
435.9 (2011), pp. 2193–2221. issn: 0024-3795. doi: 10.1016/j.laa.2011.04.020.

[ASNA] N. J. Higham. Accuracy and Stability of Numerical Algorithms. 2nd ed. Philadelphia,
PA, USA: Society for Industrial and Applied Mathematics, 2002. isbn: 978-0-89871-
521-7. doi: 10.1137/1.9780898718027.

[Bai+00] Z. Bai, J. Demmel, J. Dongarra, A. Ruhe, and H. van der Vorst, eds. Templates for the
Solution of Algebraic Eigenvalue Problems. A Practical Guide. Software, Environments
and Tools. Philadelphia, PA, USA: Society for Industrial and Applied Mathematics,
2000. isbn: 978-0-89871-471-5. doi: 10.1137/1.9780898719581. url: http://web.
cs.ucdavis.edu/~bai/ET/contents.html.

[Bai92] Z. Bai. The CSD, GSVD, Their Applications and Computations. IMA Preprint Series
958. Minneapolis, MN, USA: University of Minnesota, 1992. HDL: 11299/1875.

[Bat96] K.-J. Bathe. Finite Element Procedures. Upper Saddle River, NJ, USA: Prentice-Hall,
1996. isbn: 978-0-13-301458-7.

[BD92] Z. Bai and J. W. Demmel. Computing the Generalized Singular Value Decomposition.
1992. Lapack Working Note 46.

[Bet+13] T. Betcke, N. J. Higham, V. Mehrmann, C. Schröder, and F. Tisseur. “NLEVP: A Col-
lection of Nonlinear Eigenvalue Problems”. In: ACM Transactions on Mathematical
Software 39.2 (2013), 7:1–7:28. issn: 0098-3500. doi: 10.1145/2427023.2427024.

[BL04] J. K. Bennighof and R. B. Lehoucq. “An Automated Multilevel Substructuring
Method for Eigenspace Computation in Linear Elastodynamics”. In: SIAM Journal
on Scientific Computing 25.6 (2004), pp. 2084–2106. issn: 1064-8275. doi: 10.1137/
S1064827502400650.

[BM12] A. M. Bradley and W. Murray.Matrix-Free Approximate Equilibration. Stanford, CA,
USA, 2012. arXiv: 1110.2805v2 [math.NA].

[Bul+15] A. Buluç, H. Meyerhenke, I. Safro, P. Sanders, and C. Schulz. Recent Advances in
Graph Partitioning. 2015. arXiv: 1311.3144v3 [cs.DS].

[BZ93] Z. Bai and H. Zha. “A New Preprocessing Algorithm for the Computation of the
Generalized Singular Value Decomposition”. In: SIAM Journal on Scientific Comput-
ing 14.4 (1993), pp. 1007–1012. issn: 1064-8275. doi: 10.1137/0914060.

[CB68] R. R. Craig Jr. and M. C. C. Bampton. “Coupling of Substructures for Dynamic
Analyses”. In:AIAA Journal 6.7 (1968), pp. 1313–1319. issn: 0001-1452. doi: 10.2514/
3.4741.

74

http://dx.doi.org/10.1016/j.laa.2010.12.014
http://dx.doi.org/10.1016/j.laa.2010.12.014
http://dx.doi.org/10.1016/j.laa.2011.04.020
http://dx.doi.org/10.1137/1.9780898718027
http://dx.doi.org/10.1137/1.9780898719581
http://web.cs.ucdavis.edu/~bai/ET/contents.html
http://web.cs.ucdavis.edu/~bai/ET/contents.html
http://hdl.handle.net/11299/1875
http://www.netlib.org/lapack/lawnspdf/lawn46.pdf
http://dx.doi.org/10.1145/2427023.2427024
http://dx.doi.org/10.1137/S1064827502400650
http://dx.doi.org/10.1137/S1064827502400650
http://arxiv.org/abs/1110.2805v2
http://arxiv.org/abs/1311.3144v3
http://dx.doi.org/10.1137/0914060
http://dx.doi.org/10.2514/3.4741
http://dx.doi.org/10.2514/3.4741

Bibliography

[CMM16] C. Conrads, V. Mehrmann, and A. Międlar. “Adaptive numerical solution of eigen-
value problems arising fromfinite elementmodels. AMLSvs.AFEM”. In:APanorama
of Mathematics. Pure and Applied. Ed. by C. M. da Fonseca, D. V. Huynh, S. Kirkland,
and V. K. Tuan. Contemporary Mathematics 658. Providence, RI, USA: American
Mathematical Society, 2016, pp. 197–226. isbn: 978-1-4704-1668-3. doi: 10.1090/
conm/658/13127.

[Coo+01] R. D. Cook, D. S. Malkus, M. E. Plesha, and R. J. Witt. Concepts and Application of
Finite Element Analysis. 4th ed. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2001.
isbn: 978-0-471-35609-5.

[Cor+09] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms.
3rd ed. Boston, MA, USA: MIT Press, 2009. isbn: 978-0-262-03384-8.

[DB08] Z. Drmač and Z. Bujanović. “On the Failure of Rank-Revealing QR Factorization
Software. A Case Study”. In: ACM Transactions on Mathematical Software 35.2 (2008),
12:1–12:28. issn: 0098-3500. doi: 10.1145/1377612.1377616.

[Dem+07] J. W. Demmel, O. A. Marques, B. N. Parlett, and C. Vömel. Performance and Accuracy
of LAPACK’s Symmetric Tridiagonal Eigensolvers. 2007. Lapack Working Note 183.

[Dem97] J. W. Demmel. Applied Numerical Linear Algebra. Philadelphia, PA, USA: Society for
Industrial and Applied Mathematics, 1997. isbn: 978-0-898713-89-3.

[DGL89] I. Duff, R. Grimes, and J. Lewis. “SparseMatrix Test Problems”. In:ACMTransactions
on Mathematics Software 15.1 (1989), pp. 1–14. issn: 0098-3500. doi: 10.1145/62038.
62043.

[DH11] T. A. Davis and Y. Hu. “The University of Florida Sparse Matrix Collection”. In:
ACM Transactions on Mathematical Software 38.1 (2011), 1:1–1:25. issn: 0098-3500. doi:
10.1145/2049662.2049663.

[Dhi97] I. S. Dhillon. “A New O(n2) Algorithm for the Symmetric Tridiagonal Eigen-
value/Eigenvector Problem”. PhD thesis. Berkeley, CA, USA: University of Califor-
nia, Berkeley, 1997. url: http://www.cs.utexas.edu/users/inderjit/public_
papers/thesis.pdf.

[DM02] E. D. Dolan and J. J. Moré. “Benchmarking optimization software with performance
profiles”. In: Mathematical Programming 91.2 (2002), pp. 201–213. issn: 0025-5610.
doi: 10.1007/s101070100263.

[Fra61] J. G. F. Francis. “The QR Transformation. A Unitary Analogue to the LR Transfor-
mation – Part 1”. In: The Computer Journal 4.3 (1961), pp. 265–271. issn: 0010-4620.
doi: 10.1093/comjnl/4.3.265.

[FSV98] D. R. Fokkema, G. L. G. Sleijpen, and H. A. Van der Vorst. “Jacobi–Davidson Style
QR and QZ Algorithms for the Reduction of Matrix Pencils”. In: SIAM Journal
on Scientific Computing 20.1 (1998), pp. 94–125. issn: 1064-8275. doi: 10 . 1137 /
S1064827596300073.

[Gao+08] W. Gao, X. S. Li, C. Yang, and Z. Bai. “An Implementation and Evaluation of the
AMLS Method for Sparse Eigenvalue Problems”. In: ACM Transactions on Math-
ematical Software 34.4 (2008), 20:1–20:28. issn: 0098-3500. doi: 10.1145/1377596.
1377600.

75

http://dx.doi.org/10.1090/conm/658/13127
http://dx.doi.org/10.1090/conm/658/13127
http://dx.doi.org/10.1145/1377612.1377616
http://www.netlib.org/lapack/lawnspdf/lawn183.pdf
http://dx.doi.org/10.1145/62038.62043
http://dx.doi.org/10.1145/62038.62043
http://dx.doi.org/10.1145/2049662.2049663
http://www.cs.utexas.edu/users/inderjit/public_papers/thesis.pdf
http://www.cs.utexas.edu/users/inderjit/public_papers/thesis.pdf
http://dx.doi.org/10.1007/s101070100263
http://dx.doi.org/10.1093/comjnl/4.3.265
http://dx.doi.org/10.1137/S1064827596300073
http://dx.doi.org/10.1137/S1064827596300073
http://dx.doi.org/10.1145/1377596.1377600
http://dx.doi.org/10.1145/1377596.1377600

Bibliography

[Gar+03] S. D. Garvey, F. Tisseur, M. I. Friswell, J. E. T. Penny, and U. Prells. “Simultaneous
tridiagonalization of two symmetric matrices”. In: International Journal for Numerical
Methods in Engineering 57.12 (2003), pp. 1643–1660. issn: 1097-0207. doi: 10.1002/
nme.733.

[GBP04] D. Givoli, P. E. Barbone, and I. Patlashenko. “Which are the important modes of
a subsystem?” In: International Journal for Numerical Methods in Engineering 59.12
(2004), pp. 1657–1678. issn: 1097-0207. doi: 10.1002/nme.935.

[Geo73] A. George. “Nested Dissection of a Regular Finite Element Mesh”. In: SIAM Jour-
nal on Numerical Analysis 10.2 (1973), pp. 345–363. issn: 0036-1429. doi: 10.1137/
0710032.

[Gir+05] L. Giraud, J. Langou, M. Rozložník, and J. van den Eshof. “Rounding error analysis
of the classical Gram-Schmidt orthogonalization process”. In: Numerische Mathe-
matik 101.1 (2005), pp. 87–100. issn: 0029-599X. doi: 10.1007/s00211-005-0615-4.

[GRS07] C. Grossmann, H.-G. Roos, and M. Stynes. Numerical Treatment of Partial Differential
Equations. Universitext. Translated and revised from the 3rd (2005) German edition
by Martin Stynes. Berlin, Germany: Springer-Verlag, 2007. isbn: 978-3-540-71582-5.
doi: 10.1007/978-3-540-71584-9.

[HH98] D. J. Higham and N. J. Higham. “Structured Backward Error and Condition of
Generalized Eigenvalue Problems”. In: SIAM Journal on Matrix Analysis and Appli-
cations 20.2 (1998), pp. 493–512. issn: 0895-4798. doi: 10.1137/S0895479896313188.
MIMS EPrint 343.

[HHL07] S. Hammarling, N. J. Higham, andC. Lucas. LAPACK-Style Codes for Pivoted Cholesky
and QR Updating. Manchester, UK, 2007. MIMS EPrint 689.

[HJ12] R. A. Horn and C. R. Johnson.Matrix Analysis. 2nd ed. New York, NY, USA: Cam-
bridge University Press, 2012. isbn: 978-0-521-54823-6.

[HL07] U. L. Hetmaniuk and R. B. Lehoucq. “Multilevel Methods for Eigenspace Compu-
tations in Structural Dynamics”. In: Domain Decomposition Methods in Science and
Engineering XVI. Ed. by O. B. Widlund and D. E. Keyes. Lecture Notes in Com-
putational Science and Engineering 55. Berlin, Germany: Springer-Verlag, 2007,
pp. 103–113. isbn: 978-3-540-34468-1. doi: 10.1007/978-3-540-34469-8_9.

[JKL99] H.-J. Jung, M.-C. Kim, and I.-W. Lee. “An improved subspace iteration method
with shifting”. In: Computer & Structures 70.6 (1999), pp. 625–633. issn: 0045-7949.
doi: 10.1016/S0045-7949(98)00201-6.

[JL99] H.-J. Jung and I.-W. Lee. “An improved subspace iteration method with shift for
structures with multiple natural frequencies”. In: Journal of Sound and Vibration
227.2 (1999), pp. 271–291. issn: 0022-460X. doi: 10.1006/jsvi.1999.2344.

[Kan+14] R. Kannan, S. Hendry, N. J. Higham, and F. Tisseur. “Detecting the causes of ill-
conditioning in structural finite element models”. In: Computers & Structures 133
(2014), pp. 79–89. issn: 0045-7949. doi: 10.1016/j.compstruc.2013.11.014. MIMS
EPrint 1997.

[Kap01] M. F. Kaplan. “Implementation of Automated Multilevel Substructuring for Fre-
quency Response Analysis of Structures”. PhD thesis. Austin, TX, USA: University
of Texas at Austin, 2001. HDL: 2152/10611.

76

http://dx.doi.org/10.1002/nme.733
http://dx.doi.org/10.1002/nme.733
http://dx.doi.org/10.1002/nme.935
http://dx.doi.org/10.1137/0710032
http://dx.doi.org/10.1137/0710032
http://dx.doi.org/10.1007/s00211-005-0615-4
http://dx.doi.org/10.1007/978-3-540-71584-9
http://dx.doi.org/10.1137/S0895479896313188
http://eprints.ma.man.ac.uk/343/
http://eprints.ma.man.ac.uk/689/
http://dx.doi.org/10.1007/978-3-540-34469-8_9
http://dx.doi.org/10.1016/S0045-7949(98)00201-6
http://dx.doi.org/10.1006/jsvi.1999.2344
http://dx.doi.org/10.1016/j.compstruc.2013.11.014
http://eprints.ma.man.ac.uk/1997/
http://hdl.handle.net/2152/10611

Bibliography

[KK98] G. Karypis and V. Kumar. “A Fast and Highly Quality Multilevel Scheme for Par-
titioning Irregular Graphs”. In: SIAM Journal on Scientific Computing 20.1 (1998),
pp. 359–392. issn: 1064-8275. doi: 10.1137/S1064827595287997.

[Kny01] A. V. Knyazev. “Toward the Optimal Preconditioned Eigensolver. Locally Optimal
Block Preconditioned Conjugate Gradient Method”. In: SIAM Journal on Scientific
Computing 23.2 (2001), pp. 517–541. issn: 1064-8275. doi: 10.1137/S1064827500366124.

[Kre11] E. Kreyszig. Advanced Engineering Mathematics. 10th ed. Hoboken, NJ, USA: Wiley,
2011. isbn: 978-0-470-45836-5.

[Lan+06] J. Langou, J. Langou, P. Luszczek, J. Kurzak, A. Buttari, and J. Dongarra. “Exploiting
the Performance of 32 bit Floating Point Arithmetic in Obtaining 64 bit Accuracy.
Revisiting Iterative Refinement for Linear Systems”. ICL Friday Lunch Talk by
Julie Langou. May 19, 2006. url: http://icl.cs.utk.edu/projectsfiles/iter-
ref/files/iter-ref.pdf.

[Li+11] R.-C. Li, Y. Nakatsukasa, N. Truhar, and S. Xu. “Perturbation of Partitioned Her-
mitian Definite Generalized Eigenvalue Problems”. In: SIAM Journal on Matrix
Analysis and Applications 32.2 (2011). See also erratum [Li+13], pp. 642–663. issn:
0895-4798. doi: 10.1137/100808356.

[Li+13] R.-C. Li, Y. Nakatsukasa, N. Truhar, and S. Xu. “Erratum: Perturbation of Partitioned
Hermitian Definite Generalized Eigenvalue Problems”. In: SIAM Journal on Matrix
Analysis and Applications 34.1 (2013). Erratum for [Li+11], pp. 280–281. issn: 0895-
4798. doi: 10.1137/120874795.

[Li05] X. S. Li. “An Overview of SuperLU. Algorithms, Implementation, and User Inter-
face”. In: ACM Transactions on Mathematical Software 31.3 (2005), pp. 302–325. issn:
0098-3500. doi: 10.1145/1089014.1089017.

[LRT79] R. J. Lipton, D. J. Rose, and R. E. Tarjan. “Generalized Nested Dissection”. In:
SIAM Journal on Numerical Analysis 16.2 (1979), pp. 346–358. issn: 0036-1429. doi:
10.1137/0716027.

[LvD06] D. Lemonnier and P. van Dooren. “Balancing Regular Matrix Pencils”. In: SIAM
Journal on Matrix Analysis and Applications 28.1 (2006), pp. 253–263. issn: 0895-4798.
doi: 10.1137/S0895479804440931.

[MC] G. H. Golub and C. F. Van Loan. Matrix Computations. 4th ed. Baltimore, MD, USA:
Johns Hopkins University Press, 2012. isbn: 978-1-4214-0794-4.

[McC94] S. F. McCormick, ed. Multigrid Methods. Frontiers in Applied Mathematics. Second
printing. Philadelphia, PA, USA: Society for Industrial and Applied Mathematics,
1994. isbn: 978-1-61197-188-0. doi: 10.1137/1.9781611971057.

[MMW15] C. Mehl, V. Mehrmann, and M. Wojtylak. “On the Distance to Singularity via Low
Rank Perturbations”. In: Operators and Matrices 9.4 (2015), pp. 733–772. issn: 1846-
3886. doi: 10.7153/oam-09-44.

[MX15] V. Mehrmann and H. Xu. “Structure preserving deflation of infinite eigenvalues
in structured pencils”. In: Electronic Transactions on Numerical Analysis 44 (2015),
pp. 1–24. issn: 1068-9613. url: http://etna.mcs.kent.edu/volumes/2011-
2020/vol44/.

[Nak12] Y. Nakatsukasa. “On the condition numbers of a multiple eigenvalue of a gener-
alized eigenvalue problem”. In: Numerische Mathematik 121.3 (2012), pp. 531–544.
issn: 0029-599X. doi: 10.1007/s00211-011-0440-x.

77

http://dx.doi.org/10.1137/S1064827595287997
http://dx.doi.org/10.1137/S1064827500366124
http://icl.cs.utk.edu/projectsfiles/iter-ref/files/iter-ref.pdf
http://icl.cs.utk.edu/projectsfiles/iter-ref/files/iter-ref.pdf
http://dx.doi.org/10.1137/100808356
http://dx.doi.org/10.1137/120874795
http://dx.doi.org/10.1145/1089014.1089017
http://dx.doi.org/10.1137/0716027
http://dx.doi.org/10.1137/S0895479804440931
http://dx.doi.org/10.1137/1.9781611971057
http://dx.doi.org/10.7153/oam-09-44
http://etna.mcs.kent.edu/volumes/2011-2020/vol44/
http://etna.mcs.kent.edu/volumes/2011-2020/vol44/
http://dx.doi.org/10.1007/s00211-011-0440-x

Bibliography

[NSV09] R. H. Nochetto, K. G. Siebert, and A. Veeser. “Theory of adaptive finite element
methods. An introduction”. In: Multiscale, Nonlinear and Adaptive Approximation.
Ed. by R. DeVore and A. Kunoth. Berlin, Germany: Springer-Verlag, 2009, pp. 409–
542. isbn: 978-3-642-03412-1. doi: 10.1007/978-3-642-03413-8_12.

[Par74] N. B. Parlett. “The Rayleigh Quotient Iteration and Some Generalizations for Non-
normal Matrices”. In: Mathematics of Computation 28.127 (1974), pp. 679–693. issn:
0025-5718. doi: 10.2307/2005689.

[Par98] B. N. Parlett. The Symmetric Eigenvalue Problem. Classics in Applied Mathematics
20. Philadelphia, PA, USA: Society for Industrial and Applied Mathematics, 1998.
isbn: 978-0-89871-402-9. doi: 10.1137/1.9781611971163.

[Roz+12] M. Rozložník, M. Tůma, A. Smoktunowicz, and J. Kopal. “Numerical stability of
orthogonalization methods with a non-standard inner product”. In: BIT Numerical
Mathematics 52.4 (2012), pp. 1035–1058. issn: 0006-3835. doi: 10.1007/s10543-012-
0398-9.

[Saa11] Y. Saad. Numerical Methods for Large Eigenvalue Problems. Revised Edition. Classics in
Applied Mathematics 66. Philadelphia, PA, USA: Society for Industrial and Applied
Mathematics, 2011. isbn: 978-1-61197-072-2. doi: 10.1137/1.9781611970739.

[SBG96] B. F. Smith, P. E. Bjørstad, andW.D. Gropp.DomainDecomposition. ParallelMultilevel
Methods for Elliptic Partial Differential Equations. New York, NY, USA: Cambridge
University Press, 1996. isbn: 978-0-521-49589-9.

[Sed02] R. Sedgewick. Algorithms in C++. Part 5: Graph Algorithms. 3rd ed. 8th printing,
November 2006. Boston, MA, USA: Addison-Wesley, 2002. isbn: 978-0-201-35118-6.

[SF73] G. Strang and G. J. Fix. An Analysis of the Finite Element Method. Prentice-Hall Series
in Automatic Computation. Englewood Cliffs, NJ, USA: Prentice-Hall, 1973. isbn:
0-13-032946-0.

[Smi97] B. F. Smith. “Domain Decomposition Methods for Partial Differential Equations”.
In: Parallel Numerical Algorithms. Ed. by D. E. Keyes, A. Sameh, and V. Venkatakr-
ishnan. ICASE/LaRC Interdisciplinary Series in Science and Engineering 4. Berlin,
Germany: Springer-Verlag, 1997, pp. 225–243. isbn: 978-94-010-6277-0. doi: 10.1007/
978-94-011-5412-3_8.

[Sta05] A. Stathopoulos. Locking issues for finding a large number of eigenvectors of hermitian
matrices. Tech. rep. WM-CS-2005-09. Revised June 2006. Williamsburg, VA, USA:
College of William & Mary, 2005.

[Ste01] G.W. Stewart.MatrixAlgorithms. Vol. 2:Eigensystems. Philadelphia, PA,USA: Society
for Industrial and Applied Mathematics, 2001. isbn: 978-0-898714-14-2.

[Sut09] B. D. Sutton. “Computing the complete CS decomposition”. In:Numerical Algorithms
50.1 (2009), pp. 33–65. issn: 1017-1398. doi: 10.1007/s11075-008-9215-6.

[Tas15] L. Taslaman. “An Algorithm for Quadratic Eigenproblems with Low Rank Damp-
ing”. In: SIAM Journal on Matrix Analysis and Applications 36.1 (2015), pp. 251–272.
issn: 0895-4798. doi: 10.1137/140969099.

[Tis04] F. Tisseur. “Tridiagonal-Diagonal Reduction of Symmetric Indefinite Pairs”. In:
SIAM Journal on Matrix Analysis And Applications 26.1 (2004), pp. 215–232. issn:
0895-4798. doi: 10.1137/S0895479802414783. MIMS EPrint 467.

78

http://dx.doi.org/10.1007/978-3-642-03413-8_12
http://dx.doi.org/10.2307/2005689
http://dx.doi.org/10.1137/1.9781611971163
http://dx.doi.org/10.1007/s10543-012-0398-9
http://dx.doi.org/10.1007/s10543-012-0398-9
http://dx.doi.org/10.1137/1.9781611970739
http://dx.doi.org/10.1007/978-94-011-5412-3_8
http://dx.doi.org/10.1007/978-94-011-5412-3_8
http://dx.doi.org/10.1007/s11075-008-9215-6
http://dx.doi.org/10.1137/140969099
http://dx.doi.org/10.1137/S0895479802414783
http://eprints.ma.man.ac.uk/467/

Bibliography

[War81] R. C. Ward. “Balancing the Generalized Eigenvalue Problem”. In: SIAM Journal
on Scientific and Statistical Computing 2.2 (1981), pp. 141–152. issn: 0196-5204. doi:
10.1137/0902012.

[YVC13] J. Yin, H. Voss, and P. Chen. “Improving eigenpairs of automated multilevel sub-
structuringwith subspace iterations”. In:Computers & Structures 119 (2013), pp. 115–
124. issn: 0045-7949. doi: 10.1016/j.compstruc.2013.01.004.

79

http://dx.doi.org/10.1137/0902012
http://dx.doi.org/10.1016/j.compstruc.2013.01.004

	Introduction
	Problem Statement
	Notation and Preliminaries

	Numerical Solution of Eigenvalue Problems
	Assessing Solution Accuracy
	Algebraic Eigenvalue Problems and the Finite Element Method
	LAPACK

	Generalized Eigenvalue Problem Solvers
	The Computational Complexity of Iterative Solvers
	Solving Generalized Eigenvalue Problems
	QZ Algorithm
	SEP Reduction
	SEP Reduction with Deflation
	GSVD Reduction

	Solving Standard Eigenvalue Problems
	Computing the Generalized Singular Value Decomposition
	Direct Computation
	Computation via QR Factorizations and CSD
	Computation via QR Factorizations and SVD

	Numerical Experiments
	Conclusion

	Projection Methods for Large, Sparse Generalized Eigenvalue Problems
	Spectral Approximation for Large, Sparse Matrices
	Improving Numerical Stability
	Automated Multilevel Substructuring
	Nested Dissection
	Algorithm
	Remarks
	Exact Eigenpairs

	Eigenvalues and GEPs with Block Matrices
	Eigenvalue Perturbation Bounds without Eigenvectors
	Eigenvalue Perturbation Bounds with Eigenvectors
	Application to AMLS
	Minimizing Eigenvalue Perturbation
	Backward Error Bounds

	A Multilevel Eigensolver
	Developing AMLS Further
	Description
	More Robust AMLS with Intermediate GEP Solves

	The Multilevel Eigensolver in Practice
	Adaptive Backward Error Control is Unnecessary
	Bisection is Unnecessary
	Solving System of Linear Equations with the Schur Complement
	Numerical Experiments

	Conclusion
	Bibliography

