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The Generalized Eigenvalue Problem (GEP)

Definition
Let K ,M ∈ Cn,n. Finding x ∈ Cn \ {0} and λ ∈ C so that

Kx = λMx

is called a generalized eigenvalue problem.
K is called stiffness matrix, M is called mass matrix.
(λ, x) is called an eigenpair.
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Matrix Properties

• K , M arise from finite element discretization
• K , M Hermitian positive semidefinite (HPSD)
• M may be diagonal
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Solution Properties
Regular matrix pencils, HPSD matrices

• The matrices can be simultaneously diagonalized by a non-unitary
congruence transformation

• 0 ≤ λ ≤ ∞
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Singular Matrix Pencils
Example

K =

[
0 0
0 0

]
,M =

[
1 0
0 0

]
.

• (K − λM)e2 = 0 has a solution for all values of λ
• (K ,M) is called singular
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Requirements for Practical Accuracy Measures

• Can be calculated numerically stable
• Quickly computable
• Structure preserving
• Computes relative errors
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Polynomial Norms

Definition (Adhikari, Alam, and Kressner, 2011)

Let K ,M ∈ Cn,n, let ω ∈ R2, ω > 0, let P(t) = K − tM. We define the
matrix polynomial norm ‖P‖ω,p,q as follows:

‖P‖ω,p,q := ‖[1/ω1‖K‖p, 1/ω2‖M‖p]‖q.
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Structured Backward Error for Hermitian GEPs
Definition

Definition
Let ∆K ,∆M ∈ Cn,n be perturbations of square matrices K and M,
respectively. Then we define the corresponding polynomial ∆P as

∆P(t) := ∆K − t∆M.

Definition

Let (λ̃, x̃) be an approximate eigenpair of the Hermitian matrix pencil
(K ,M). Then the structured backward error of (λ̃, x̃) is defined as

ηH
ω,p,q(λ̃, x̃) := min{‖∆P‖ω,p,q : P(λ̃)x̃ + ∆P(λ̃)x̃ = 0, ∆P = ∆P∗}.
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Structured Backward Error for Hermitian GEPs
Calculation

Theorem (Adhikari and Alam, 2011, Theorem 3.10)

Let (λ̃, x̃) be an approximate eigenpair of the Hermitian matrix pencil
(K ,M), where λ̃ is real finite and ‖x̃‖2 = 1. Let r = Kx̃ − λ̃Mx̃, let
ωrel = [‖K‖F , ‖M‖F ]. Then

ηH
ωrel,F ,2(λ̃, x̃) = min

∥∥∥∥
[
‖∆K‖F
‖K‖F

,
‖∆M‖F
‖M‖F

]∥∥∥∥
2

=

√
2‖r‖22 − |r∗x̃ |

2

‖K‖2F + |λ̃|2‖M‖2F
,

where (K + ∆K )x̃ = λ̃(M + ∆M)x̃ .
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Solvers for GEPs with HPSD Matrices
Standard Eigenvalue Problem (SEP) Reduction (SR)

K Hermitian, M HPD:
• Compute Cholesky decomposition LL∗ := M
• Solve L−1KL−∗xL = λxL

• Revert basis change: x := L−T xL
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Solvers for GEPs with HPSD Matrices
SEP Reduction with Deflation (SR+D)

K Hermitian, M HPSD:
• Deflate infinite eigenvalues from matrix pencil
• Apply SEP reduction to deflated pencil
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The Generalized Singular Value Decomposition (GSVD)

Definition (MC, §6.1.6, Bai, 1992, §2)
Let n, r ∈ N, n ≥ r , let A,B ∈ Cn,r . Then there are unitary matrices
U1,U2 ∈ Cn,n, Q ∈ Cr ,r , nonnegative diagonal matrices Σ1,Σ2 ∈ Rn,r , and
an upper-triangular matrix R ∈ Cr ,r such that

[
A
B

]
=

[
U1 0
0 U2

] [
Σ1
Σ2

] [
0 R

]
Q∗.

It holds that

Σ1 =

[ r
r C
n − r 0

]
,Σ2 =

[ r
r S
n − r 0

]
,

where C 2 + S2 = Ir . If A and B are real, then all matrices may be taken to
be real.
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Theorem (Bai, 1992, §4.2, §4.3)
Let A,B ∈ Cn,n, let rank [A∗,B∗] = n, let

[
A
B

]
=

[
U1 0
0 U2

] [
Σ1
Σ2

]
RQ∗

be the GSVD of (A,B) and let QR−∗ = [x1, x2, . . . , xn]. Then we solved
implicitly the generalized eigenvalue problem

A∗Axi = λiB∗Bxi ,

where λi = c2
ii/s2

ii , i = 1, 2, . . . , n. If A and B are real, then all matrices can
be taken to be real.
Note (∞, x) is an eigenpair of (A∗A,B∗B) iff (0, x) is an eigenpair of
(B∗B,A∗A).
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Solvers for GEPs with HPSD Matrices
GSVD Reduction

• Compute A such that K = A∗A
• Compute B such that M = B∗B
• Compute GSVD of (A,B)

• Compute GSVD directly, or
• use QR factorizations and a CS decomposition (QR+CSD)

• Compute eigenpairs
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Solvers for GEPs with HPSD Matrices
Properties

Solver QZ SR SR+D GSVD

Backward stable 3 (3) 3

Computes eigenvectors 3 3 3

Preserves symmetry 3 3 3

Preserves definiteness (3) (3) 3

Handles singular pencils 3 (3) 3

(K ,M), (M,K ) equivalent 3 3
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Solvers for GEPs with HPSD Matrices
Performance Profile (Single Precision)
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Projection Method

Definition (Saad, 2011, §4.3)
Given a subspace S ⊆ Cn, an orthogonal projection method for an
eigenvalue problem tries to approximate an eigenpair (λ̃, x̃) so that x̃ ∈ S
and Kx̃ − λ̃Mx̃ ⊥ S for some given inner product in which orthogonality is
defined.
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A Multilevel Eigensolver
Assumptions

• The user seeks eigenpairs (in contrast to eigenvalues),
• mass and stiffness matrix are given explicitly,
• mass and stiffness matrix are HPSD,
• the matrix pencil is regular, and
• GEPs on the block diagonal deliver good approximations to the
eigenpairs.
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A Multilevel Eigensolver
Idea

Recursively decompose the GEP into many small GEPs
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A Multilevel Eigensolver
Step 1: Partitioning







⇒







Minimize weight of off-diagonal entries (graph bisection)

Christoph Conrads (TUB) Master’s Thesis Feb 4, 2016 25 / 33



A Multilevel Eigensolver
Step 2: Recursion

K =







M =







Compute eigenpair approximations in block diagonal GEPs

Christoph Conrads (TUB) Master’s Thesis Feb 4, 2016 26 / 33



A Multilevel Eigensolver
Step 3: Iterative Improvement

K =







M =







Improve eigenpair approximations
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Additional Thesis Topics

• Singular matrix pencils
• A new fast and stable GEP solver for HPSD matrices
• Improving numerical stability
• Numerical experiments with multilevel eigensolver (TODO)
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Conclusion

• Structured backward errors can be computed quickly for GEPs with
Hermitian matrices

• GSVD-based solvers are fast and robust in practice
• In our tests the more robust the GEP solver, the slower the GEP solver

Christoph Conrads (TUB) Master’s Thesis Feb 4, 2016 30 / 33



Thank you for your attention.
Questions?
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